Nuprl Lemma : lcm-unique

n,m,l:ℕ+.  ((((n l) ∧ (m l)) ∧ (∀v:ℤ((n v)  (m v)  (l v))))  (l lcm(n;m) ∈ ℤ))


Proof




Definitions occuring in Statement :  lcm: lcm(a;b) divides: a nat_plus: + all: x:A. B[x] implies:  Q and: P ∧ Q int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q and: P ∧ Q member: t ∈ T subtype_rel: A ⊆B nat: uall: [x:A]. B[x] nat_plus: + uimplies: supposing a prop: iff: ⇐⇒ Q assoced: b so_lambda: λ2x.t[x] so_apply: x[s] guard: {T}
Lemmas referenced :  lcm-is-lcm assoced_nelim nat_plus_subtype_nat lcm_wf le_weakening2 lcm-positive le_wf and_wf divides_wf all_wf nat_plus_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalHypSubstitution productElimination thin lemma_by_obid dependent_functionElimination hypothesisEquality applyEquality hypothesis sqequalRule dependent_set_memberEquality isectElimination setElimination rename natural_numberEquality independent_isectElimination independent_functionElimination independent_pairFormation intEquality lambdaEquality functionEquality

Latex:
\mforall{}n,m,l:\mBbbN{}\msupplus{}.    ((((n  |  l)  \mwedge{}  (m  |  l))  \mwedge{}  (\mforall{}v:\mBbbZ{}.  ((n  |  v)  {}\mRightarrow{}  (m  |  v)  {}\mRightarrow{}  (l  |  v))))  {}\mRightarrow{}  (l  =  lcm(n;m)))



Date html generated: 2016_05_14-PM-09_25_11
Last ObjectModification: 2015_12_26-PM-08_03_07

Theory : num_thy_1


Home Index