Nuprl Lemma : lcm-positive
∀[a,b:ℕ+].  0 < lcm(a;b)
Proof
Definitions occuring in Statement : 
lcm: lcm(a;b), 
nat_plus: ℕ+, 
less_than: a < b, 
uall: ∀[x:A]. B[x], 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
nat_plus: ℕ+, 
all: ∀x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
not: ¬A, 
implies: P ⇒ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
top: Top, 
and: P ∧ Q, 
prop: ℙ, 
lcm: lcm(a;b), 
has-value: (a)↓, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
nequal: a ≠ b ∈ T , 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
cand: A c∧ B, 
gt: i > j, 
int_nzero: ℤ-o
Lemmas referenced : 
gcd-positive, 
nat_plus_subtype_nat, 
nat_plus_properties, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__le, 
intformle_wf, 
int_formula_prop_le_lemma, 
value-type-has-value, 
nat_plus_wf, 
set-value-type, 
less_than_wf, 
int-value-type, 
gcd_wf, 
eq_int_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
member-less_than, 
lcm_wf, 
gcd-property, 
set_subtype_base, 
int_subtype_base, 
istype-less_than, 
decidable__equal_int, 
itermMultiply_wf, 
int_term_value_mul_lemma, 
neg_mul_arg_bounds, 
div-cancel, 
nequal_wf, 
mul_bounds_1b
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
sqequalRule, 
independent_isectElimination, 
setElimination, 
rename, 
dependent_functionElimination, 
natural_numberEquality, 
unionElimination, 
approximateComputation, 
independent_functionElimination, 
Error :dependent_pairFormation_alt, 
Error :lambdaEquality_alt, 
int_eqEquality, 
Error :isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
Error :universeIsType, 
because_Cache, 
callbyvalueReduce, 
intEquality, 
Error :inhabitedIsType, 
Error :lambdaFormation_alt, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
Error :equalityIstype, 
promote_hyp, 
instantiate, 
cumulativity, 
Error :isectIsTypeImplies, 
baseApply, 
closedConclusion, 
baseClosed, 
sqequalBase, 
Error :inrFormation_alt, 
Error :productIsType, 
multiplyEquality, 
Error :dependent_set_memberEquality_alt
Latex:
\mforall{}[a,b:\mBbbN{}\msupplus{}].    0  <  lcm(a;b)
Date html generated:
2019_06_20-PM-02_27_30
Last ObjectModification:
2019_03_06-AM-10_54_05
Theory : num_thy_1
Home
Index