Nuprl Lemma : lcm-positive

[a,b:ℕ+].  0 < lcm(a;b)


Proof




Definitions occuring in Statement :  lcm: lcm(a;b) nat_plus: + less_than: a < b uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B uimplies: supposing a nat_plus: + all: x:A. B[x] decidable: Dec(P) or: P ∨ Q not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top and: P ∧ Q prop: lcm: lcm(a;b) has-value: (a)↓ so_lambda: λ2x.t[x] so_apply: x[s] bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b nequal: a ≠ b ∈  iff: ⇐⇒ Q rev_implies:  Q cand: c∧ B gt: i > j int_nzero: -o
Lemmas referenced :  gcd-positive nat_plus_subtype_nat nat_plus_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__le intformle_wf int_formula_prop_le_lemma value-type-has-value nat_plus_wf set-value-type less_than_wf int-value-type gcd_wf eq_int_wf eqtt_to_assert assert_of_eq_int intformeq_wf int_formula_prop_eq_lemma eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot neg_assert_of_eq_int member-less_than lcm_wf gcd-property set_subtype_base int_subtype_base istype-less_than decidable__equal_int itermMultiply_wf int_term_value_mul_lemma neg_mul_arg_bounds div-cancel nequal_wf mul_bounds_1b
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality hypothesis sqequalRule independent_isectElimination setElimination rename dependent_functionElimination natural_numberEquality unionElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality Error :isect_memberEquality_alt,  voidElimination independent_pairFormation Error :universeIsType,  because_Cache callbyvalueReduce intEquality Error :inhabitedIsType,  Error :lambdaFormation_alt,  equalityElimination equalityTransitivity equalitySymmetry productElimination Error :equalityIstype,  promote_hyp instantiate cumulativity Error :isectIsTypeImplies,  baseApply closedConclusion baseClosed sqequalBase Error :inrFormation_alt,  Error :productIsType,  multiplyEquality Error :dependent_set_memberEquality_alt

Latex:
\mforall{}[a,b:\mBbbN{}\msupplus{}].    0  <  lcm(a;b)



Date html generated: 2019_06_20-PM-02_27_30
Last ObjectModification: 2019_03_06-AM-10_54_05

Theory : num_thy_1


Home Index