Nuprl Lemma : lcm-is-lcm-nat

n,m:ℕ.  (((n lcm(n;m)) ∧ (m lcm(n;m))) ∧ (∀v:ℤ((n v)  (m v)  (lcm(n;m) v))))


Proof




Definitions occuring in Statement :  lcm: lcm(a;b) divides: a nat: all: x:A. B[x] implies:  Q and: P ∧ Q int:
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T nat: decidable: Dec(P) or: P ∨ Q uall: [x:A]. B[x] uimplies: supposing a sq_type: SQType(T) implies:  Q guard: {T} and: P ∧ Q cand: c∧ B prop: lcm: lcm(a;b) has-value: (a)↓ so_lambda: λ2x.t[x] so_apply: x[s] eq_int: (i =z j) ifthenelse: if then else fi  btrue: tt bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) not: ¬A false: False bfalse: ff exists: x:A. B[x] bnot: ¬bb assert: b nat_plus: + le: A ≤ B iff: ⇐⇒ Q rev_implies:  Q subtype_rel: A ⊆B top: Top less_than': less_than'(a;b) true: True subtract: m
Lemmas referenced :  decidable__equal_int subtype_base_sq int_subtype_base nat_wf any_divs_zero divides_wf value-type-has-value int-value-type set-value-type le_wf gcd_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_int lcm-is-lcm decidable__lt false_wf not-lt-2 not-equal-2 add_functionality_wrt_le add-associates add-zero zero-add le-add-cancel condition-implies-le add-commutes minus-add minus-zero less_than_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin setElimination rename hypothesisEquality hypothesis natural_numberEquality unionElimination instantiate isectElimination cumulativity intEquality independent_isectElimination because_Cache independent_functionElimination equalityTransitivity equalitySymmetry independent_pairFormation productElimination sqequalRule callbyvalueReduce lambdaEquality equalityElimination voidElimination dependent_pairFormation promote_hyp dependent_set_memberEquality addEquality applyEquality isect_memberEquality voidEquality minusEquality

Latex:
\mforall{}n,m:\mBbbN{}.    (((n  |  lcm(n;m))  \mwedge{}  (m  |  lcm(n;m)))  \mwedge{}  (\mforall{}v:\mBbbZ{}.  ((n  |  v)  {}\mRightarrow{}  (m  |  v)  {}\mRightarrow{}  (lcm(n;m)  |  v))))



Date html generated: 2017_04_17-AM-09_46_43
Last ObjectModification: 2017_02_27-PM-05_40_50

Theory : num_thy_1


Home Index