Nuprl Lemma : lcm-is-lcm-nat
∀n,m:ℕ.  (((n | lcm(n;m)) ∧ (m | lcm(n;m))) ∧ (∀v:ℤ. ((n | v) ⇒ (m | v) ⇒ (lcm(n;m) | v))))
Proof
Definitions occuring in Statement : 
lcm: lcm(a;b), 
divides: b | a, 
nat: ℕ, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
nat: ℕ, 
decidable: Dec(P), 
or: P ∨ Q, 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
sq_type: SQType(T), 
implies: P ⇒ Q, 
guard: {T}, 
and: P ∧ Q, 
cand: A c∧ B, 
prop: ℙ, 
lcm: lcm(a;b), 
has-value: (a)↓, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
eq_int: (i =z j), 
ifthenelse: if b then t else f fi , 
btrue: tt, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
uiff: uiff(P;Q), 
not: ¬A, 
false: False, 
bfalse: ff, 
exists: ∃x:A. B[x], 
bnot: ¬bb, 
assert: ↑b, 
nat_plus: ℕ+, 
le: A ≤ B, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
subtype_rel: A ⊆r B, 
top: Top, 
less_than': less_than'(a;b), 
true: True, 
subtract: n - m
Lemmas referenced : 
decidable__equal_int, 
subtype_base_sq, 
int_subtype_base, 
nat_wf, 
any_divs_zero, 
divides_wf, 
value-type-has-value, 
int-value-type, 
set-value-type, 
le_wf, 
gcd_wf, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
lcm-is-lcm, 
decidable__lt, 
false_wf, 
not-lt-2, 
not-equal-2, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
zero-add, 
le-add-cancel, 
condition-implies-le, 
add-commutes, 
minus-add, 
minus-zero, 
less_than_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
natural_numberEquality, 
unionElimination, 
instantiate, 
isectElimination, 
cumulativity, 
intEquality, 
independent_isectElimination, 
because_Cache, 
independent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_pairFormation, 
productElimination, 
sqequalRule, 
callbyvalueReduce, 
lambdaEquality, 
equalityElimination, 
voidElimination, 
dependent_pairFormation, 
promote_hyp, 
dependent_set_memberEquality, 
addEquality, 
applyEquality, 
isect_memberEquality, 
voidEquality, 
minusEquality
Latex:
\mforall{}n,m:\mBbbN{}.    (((n  |  lcm(n;m))  \mwedge{}  (m  |  lcm(n;m)))  \mwedge{}  (\mforall{}v:\mBbbZ{}.  ((n  |  v)  {}\mRightarrow{}  (m  |  v)  {}\mRightarrow{}  (lcm(n;m)  |  v))))
Date html generated:
2017_04_17-AM-09_46_43
Last ObjectModification:
2017_02_27-PM-05_40_50
Theory : num_thy_1
Home
Index