Nuprl Lemma : lcm_wf_nat
∀[n,m:ℕ].  (lcm(n;m) ∈ ℕ)
Proof
Definitions occuring in Statement : 
lcm: lcm(a;b), 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
nat: ℕ, 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
sq_type: SQType(T), 
implies: P ⇒ Q, 
guard: {T}, 
lcm: lcm(a;b), 
has-value: (a)↓, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
eq_int: (i =z j), 
ifthenelse: if b then t else f fi , 
btrue: tt, 
le: A ≤ B, 
and: P ∧ Q, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
prop: ℙ, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
uiff: uiff(P;Q), 
ge: i ≥ j , 
nequal: a ≠ b ∈ T , 
int_upper: {i...}, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
top: Top, 
bfalse: ff, 
bnot: ¬bb, 
assert: ↑b, 
nat_plus: ℕ+, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
subtype_rel: A ⊆r B, 
true: True, 
subtract: n - m
Lemmas referenced : 
nat_wf, 
decidable__equal_int, 
subtype_base_sq, 
int_subtype_base, 
value-type-has-value, 
int-value-type, 
set-value-type, 
le_wf, 
gcd_wf, 
false_wf, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
int_upper_subtype_nat, 
nat_properties, 
nequal-le-implies, 
zero-add, 
int_upper_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
lcm_wf, 
le_weakening2, 
lcm-positive, 
decidable__lt, 
not-lt-2, 
not-equal-2, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
le-add-cancel, 
condition-implies-le, 
add-commutes, 
minus-add, 
minus-zero, 
less_than_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
extract_by_obid, 
isect_memberEquality, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache, 
dependent_functionElimination, 
setElimination, 
rename, 
natural_numberEquality, 
unionElimination, 
instantiate, 
cumulativity, 
intEquality, 
independent_isectElimination, 
independent_functionElimination, 
callbyvalueReduce, 
lambdaEquality, 
dependent_set_memberEquality, 
independent_pairFormation, 
lambdaFormation, 
equalityElimination, 
productElimination, 
hypothesis_subsumption, 
dependent_pairFormation, 
int_eqEquality, 
voidElimination, 
voidEquality, 
computeAll, 
promote_hyp, 
addEquality, 
applyEquality, 
minusEquality
Latex:
\mforall{}[n,m:\mBbbN{}].    (lcm(n;m)  \mmember{}  \mBbbN{})
Date html generated:
2017_04_17-AM-09_46_57
Last ObjectModification:
2017_02_27-PM-05_40_54
Theory : num_thy_1
Home
Index