Nuprl Lemma : lcm_wf_nat

[n,m:ℕ].  (lcm(n;m) ∈ ℕ)


Proof




Definitions occuring in Statement :  lcm: lcm(a;b) nat: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: decidable: Dec(P) or: P ∨ Q uimplies: supposing a sq_type: SQType(T) implies:  Q guard: {T} lcm: lcm(a;b) has-value: (a)↓ so_lambda: λ2x.t[x] so_apply: x[s] eq_int: (i =z j) ifthenelse: if then else fi  btrue: tt le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A prop: bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) ge: i ≥  nequal: a ≠ b ∈  int_upper: {i...} satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top bfalse: ff bnot: ¬bb assert: b nat_plus: + iff: ⇐⇒ Q rev_implies:  Q subtype_rel: A ⊆B true: True subtract: m
Lemmas referenced :  nat_wf decidable__equal_int subtype_base_sq int_subtype_base value-type-has-value int-value-type set-value-type le_wf gcd_wf false_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int int_upper_subtype_nat nat_properties nequal-le-implies zero-add int_upper_properties satisfiable-full-omega-tt intformand_wf intformeq_wf itermVar_wf itermConstant_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_int lcm_wf le_weakening2 lcm-positive decidable__lt not-lt-2 not-equal-2 add_functionality_wrt_le add-associates add-zero le-add-cancel condition-implies-le add-commutes minus-add minus-zero less_than_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry extract_by_obid isect_memberEquality isectElimination thin hypothesisEquality because_Cache dependent_functionElimination setElimination rename natural_numberEquality unionElimination instantiate cumulativity intEquality independent_isectElimination independent_functionElimination callbyvalueReduce lambdaEquality dependent_set_memberEquality independent_pairFormation lambdaFormation equalityElimination productElimination hypothesis_subsumption dependent_pairFormation int_eqEquality voidElimination voidEquality computeAll promote_hyp addEquality applyEquality minusEquality

Latex:
\mforall{}[n,m:\mBbbN{}].    (lcm(n;m)  \mmember{}  \mBbbN{})



Date html generated: 2017_04_17-AM-09_46_57
Last ObjectModification: 2017_02_27-PM-05_40_54

Theory : num_thy_1


Home Index