Nuprl Lemma : multiply_eqmod_zero_left

m,x,y:ℤ.  ((x ≡ mod m)  ((x y) ≡ mod m))


Proof




Definitions occuring in Statement :  eqmod: a ≡ mod m all: x:A. B[x] implies:  Q multiply: m natural_number: $n int:
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] uimplies: supposing a
Lemmas referenced :  eqmod_wf eqmod_weakening zero-mul multiply_functionality_wrt_eqmod
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality natural_numberEquality hypothesis intEquality dependent_functionElimination independent_isectElimination sqequalRule independent_functionElimination

Latex:
\mforall{}m,x,y:\mBbbZ{}.    ((x  \mequiv{}  0  mod  m)  {}\mRightarrow{}  ((x  *  y)  \mequiv{}  0  mod  m))



Date html generated: 2016_05_14-PM-04_22_29
Last ObjectModification: 2015_12_26-PM-08_18_32

Theory : num_thy_1


Home Index