Nuprl Lemma : polymorphic-choice

f:⋂A:Type. (A ⟶ A ⟶ A). ((f x,y. x) ∈ (⋂A:Type. (A ⟶ A ⟶ A))) ∨ (f x,y. y) ∈ (⋂A:Type. (A ⟶ A ⟶ A))))


Proof




Definitions occuring in Statement :  all: x:A. B[x] or: P ∨ Q lambda: λx.A[x] isect: x:A. B[x] function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T or: P ∨ Q squash: T uall: [x:A]. B[x] prop: label: ...$L... t uimplies: supposing a sq_type: SQType(T) implies:  Q guard: {T} true: True subtype_rel: A ⊆B iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q
Lemmas referenced :  polymorphic-choice-base equal_wf squash_wf true_wf istype-universe subtype_base_sq base_wf subtype_rel_self iff_weakening_equal
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality unionElimination Error :inlFormation_alt,  Error :isect_memberEquality_alt,  functionExtensionality sqequalRule pointwiseFunctionalityForEquality because_Cache applyEquality Error :lambdaEquality_alt,  imageElimination isectElimination equalityTransitivity equalitySymmetry Error :universeIsType,  Error :inhabitedIsType,  universeEquality instantiate cumulativity independent_isectElimination independent_functionElimination natural_numberEquality imageMemberEquality baseClosed productElimination Error :equalityIsType3,  Error :inrFormation_alt,  Error :isectIsType,  Error :functionIsType

Latex:
\mforall{}f:\mcap{}A:Type.  (A  {}\mrightarrow{}  A  {}\mrightarrow{}  A).  ((f  =  (\mlambda{}x,y.  x))  \mvee{}  (f  =  (\mlambda{}x,y.  y)))



Date html generated: 2019_06_20-PM-02_44_55
Last ObjectModification: 2018_10_06-AM-11_24_31

Theory : num_thy_1


Home Index