Nuprl Lemma : polymorphic-choice
∀f:⋂A:Type. (A ⟶ A ⟶ A). ((f = (λx,y. x) ∈ (⋂A:Type. (A ⟶ A ⟶ A))) ∨ (f = (λx,y. y) ∈ (⋂A:Type. (A ⟶ A ⟶ A))))
Proof
Definitions occuring in Statement : 
all: ∀x:A. B[x]
, 
or: P ∨ Q
, 
lambda: λx.A[x]
, 
isect: ⋂x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
or: P ∨ Q
, 
squash: ↓T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
label: ...$L... t
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
true: True
, 
subtype_rel: A ⊆r B
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
polymorphic-choice-base, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
subtype_base_sq, 
base_wf, 
subtype_rel_self, 
iff_weakening_equal
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
unionElimination, 
Error :inlFormation_alt, 
Error :isect_memberEquality_alt, 
functionExtensionality, 
sqequalRule, 
pointwiseFunctionalityForEquality, 
because_Cache, 
applyEquality, 
Error :lambdaEquality_alt, 
imageElimination, 
isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
Error :universeIsType, 
Error :inhabitedIsType, 
universeEquality, 
instantiate, 
cumulativity, 
independent_isectElimination, 
independent_functionElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
productElimination, 
Error :equalityIsType3, 
Error :inrFormation_alt, 
Error :isectIsType, 
Error :functionIsType
Latex:
\mforall{}f:\mcap{}A:Type.  (A  {}\mrightarrow{}  A  {}\mrightarrow{}  A).  ((f  =  (\mlambda{}x,y.  x))  \mvee{}  (f  =  (\mlambda{}x,y.  y)))
Date html generated:
2019_06_20-PM-02_44_55
Last ObjectModification:
2018_10_06-AM-11_24_31
Theory : num_thy_1
Home
Index