Nuprl Lemma : add-poly-prepend-sq

[p,q,l:iMonomial() List].  (add-ipoly-prepend(p;q;l) rev(l) add-ipoly(p;q))


Proof




Definitions occuring in Statement :  add-ipoly-prepend: add-ipoly-prepend(p;q;l) add-ipoly: add-ipoly(p;q) iMonomial: iMonomial() rev-append: rev(as) bs list: List uall: [x:A]. B[x] sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B uimplies: supposing a iMonomial: iMonomial() so_lambda: λ2x.t[x] prop: so_apply: x[s] int_nzero: -o all: x:A. B[x]
Lemmas referenced :  add-poly-prepend-sq1 subtype_rel_list list_wf subtype_rel_product int_nzero_wf sorted_wf subtype_rel_self iMonomial_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality because_Cache productEquality intEquality hypothesis independent_isectElimination sqequalRule lambdaEquality setEquality setElimination rename lambdaFormation

Latex:
\mforall{}[p,q,l:iMonomial()  List].    (add-ipoly-prepend(p;q;l)  \msim{}  rev(l)  +  add-ipoly(p;q))



Date html generated: 2017_09_29-PM-05_53_01
Last ObjectModification: 2017_05_11-PM-06_37_37

Theory : omega


Home Index