Nuprl Lemma : add-poly-prepend-sq
∀[p,q,l:iMonomial() List].  (add-ipoly-prepend(p;q;l) ~ rev(l) + add-ipoly(p;q))
Proof
Definitions occuring in Statement : 
add-ipoly-prepend: add-ipoly-prepend(p;q;l)
, 
add-ipoly: add-ipoly(p;q)
, 
iMonomial: iMonomial()
, 
rev-append: rev(as) + bs
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
iMonomial: iMonomial()
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
int_nzero: ℤ-o
, 
all: ∀x:A. B[x]
Lemmas referenced : 
add-poly-prepend-sq1, 
subtype_rel_list, 
list_wf, 
subtype_rel_product, 
int_nzero_wf, 
sorted_wf, 
subtype_rel_self, 
iMonomial_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
productEquality, 
intEquality, 
hypothesis, 
independent_isectElimination, 
sqequalRule, 
lambdaEquality, 
setEquality, 
setElimination, 
rename, 
lambdaFormation
Latex:
\mforall{}[p,q,l:iMonomial()  List].    (add-ipoly-prepend(p;q;l)  \msim{}  rev(l)  +  add-ipoly(p;q))
Date html generated:
2017_09_29-PM-05_53_01
Last ObjectModification:
2017_05_11-PM-06_37_37
Theory : omega
Home
Index