Nuprl Lemma : add-poly-prepend-sq1

[p,q,l:(ℤ × (ℤ List)) List].  (add-ipoly-prepend(p;q;l) rev(l) add-ipoly(p;q))


Proof




Definitions occuring in Statement :  add-ipoly-prepend: add-ipoly-prepend(p;q;l) add-ipoly: add-ipoly(p;q) rev-append: rev(as) bs list: List uall: [x:A]. B[x] product: x:A × B[x] int: sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  guard: {T} uimplies: supposing a prop: subtype_rel: A ⊆B or: P ∨ Q cons: [a b] colength: colength(L) so_lambda: λ2y.t[x; y] top: Top so_apply: x[s1;s2] squash: T sq_stable: SqStable(P) uiff: uiff(P;Q) and: P ∧ Q le: A ≤ B not: ¬A less_than': less_than'(a;b) true: True decidable: Dec(P) iff: ⇐⇒ Q rev_implies:  Q subtract: m so_lambda: λ2x.t[x] so_apply: x[s] nil: [] it: sq_type: SQType(T) less_than: a < b add-ipoly-prepend: add-ipoly-prepend(p;q;l) add-ipoly: add-ipoly(p;q) null: null(as) btrue: tt ifthenelse: if then else fi  has-value: (a)↓ bfalse: ff imonomial-le: imonomial-le(m1;m2) bool: 𝔹 unit: Unit pi1: fst(t) callbyvalueall: callbyvalueall has-valueall: has-valueall(a) exists: x:A. B[x] bnot: ¬bb assert: b nequal: a ≠ b ∈  rev-append: rev(as) bs
Lemmas referenced :  nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf list_wf equal-wf-base nat_wf list-cases product_subtype_list spread_cons_lemma colength_wf_list sq_stable__le le_antisymmetry_iff add_functionality_wrt_le add-associates add-zero zero-add le-add-cancel equal-wf-T-base decidable__le false_wf not-le-2 condition-implies-le minus-add minus-one-mul minus-one-mul-top add-commutes le_wf equal_wf list_subtype_base product_subtype_base int_subtype_base subtract_wf not-ge-2 less-iff-le minus-minus add-swap subtype_base_sq set_subtype_base bool_wf bool_subtype_base btrue_wf value-type-has-value list-value-type rev-append_wf bfalse_wf intlex_wf pi2_wf add-ipoly-wf1 assert_wf bnot_wf not_wf eqtt_to_assert uiff_transitivity eqff_to_assert assert_of_bnot int-value-type valueall-type-has-valueall list-valueall-type product-valueall-type int-valueall-type evalall-reduce eq_int_wf assert_of_eq_int bool_cases_sqequal assert-bnot neg_assert_of_eq_int has-value_wf_base is-exception_wf cons_wf decidable__equal_int rev_app_cons_lemma list_accum_cons_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination independent_functionElimination voidElimination sqequalRule lambdaEquality dependent_functionElimination isect_memberEquality sqequalAxiom productEquality intEquality baseApply closedConclusion baseClosed applyEquality because_Cache unionElimination promote_hyp hypothesis_subsumption productElimination voidEquality applyLambdaEquality imageMemberEquality imageElimination addEquality dependent_set_memberEquality independent_pairFormation minusEquality equalityTransitivity equalitySymmetry instantiate cumulativity callbyvalueReduce sqleReflexivity independent_pairEquality equalityElimination int_eqReduceTrueSq dependent_pairFormation int_eqReduceFalseSq divergentSqle int_eqEquality

Latex:
\mforall{}[p,q,l:(\mBbbZ{}  \mtimes{}  (\mBbbZ{}  List))  List].    (add-ipoly-prepend(p;q;l)  \msim{}  rev(l)  +  add-ipoly(p;q))



Date html generated: 2017_09_29-PM-05_52_59
Last ObjectModification: 2017_05_11-PM-06_42_14

Theory : omega


Home Index