Nuprl Lemma : int_term_to_rP_wf

[t:int_term()]. (int_term_to_rP(t) ∈ ℤ List)


Proof




Definitions occuring in Statement :  int_term_to_rP: int_term_to_rP(t) int_term: int_term() list: List uall: [x:A]. B[x] member: t ∈ T int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T int_term_to_rP: int_term_to_rP(t) so_lambda: λ2x.t[x] so_apply: x[s] so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2]
Lemmas referenced :  int_term_ind_wf_simple list_wf cons_wf nil_wf eager-append_wf int_term_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin intEquality hypothesis hypothesisEquality lambdaEquality because_Cache natural_numberEquality axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[t:int\_term()].  (int\_term\_to\_rP(t)  \mmember{}  \mBbbZ{}  List)



Date html generated: 2017_09_29-PM-05_54_41
Last ObjectModification: 2017_05_12-PM-11_30_32

Theory : omega


Home Index