Nuprl Lemma : isPolyOne_wf

[p:iPolynomial()]. (isPolyOne(p) ∈ 𝔹)


Proof




Definitions occuring in Statement :  isPolyOne: isPolyOne(p) iPolynomial: iPolynomial() bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T isPolyOne: isPolyOne(p) iPolynomial: iPolynomial() all: x:A. B[x] or: P ∨ Q nil: [] it: cons: [a b] so_lambda: λ2y.t[x; y] top: Top so_apply: x[s1;s2]
Lemmas referenced :  iPolynomial_wf iMonomial_wf list-cases bfalse_wf product_subtype_list spread_cons_lemma band_wf null_wf isMonomialOne_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution hypothesis axiomEquality equalityTransitivity equalitySymmetry extract_by_obid setElimination thin rename isectElimination dependent_functionElimination hypothesisEquality unionElimination promote_hyp hypothesis_subsumption productElimination isect_memberEquality voidElimination voidEquality

Latex:
\mforall{}[p:iPolynomial()].  (isPolyOne(p)  \mmember{}  \mBbbB{})



Date html generated: 2017_09_29-PM-05_52_12
Last ObjectModification: 2017_05_03-AM-11_31_13

Theory : omega


Home Index