Nuprl Lemma : isPolyOne_wf
∀[p:iPolynomial()]. (isPolyOne(p) ∈ 𝔹)
Proof
Definitions occuring in Statement : 
isPolyOne: isPolyOne(p)
, 
iPolynomial: iPolynomial()
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
isPolyOne: isPolyOne(p)
, 
iPolynomial: iPolynomial()
, 
all: ∀x:A. B[x]
, 
or: P ∨ Q
, 
nil: []
, 
it: ⋅
, 
cons: [a / b]
, 
so_lambda: λ2x y.t[x; y]
, 
top: Top
, 
so_apply: x[s1;s2]
Lemmas referenced : 
iPolynomial_wf, 
iMonomial_wf, 
list-cases, 
bfalse_wf, 
product_subtype_list, 
spread_cons_lemma, 
band_wf, 
null_wf, 
isMonomialOne_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
extract_by_obid, 
setElimination, 
thin, 
rename, 
isectElimination, 
dependent_functionElimination, 
hypothesisEquality, 
unionElimination, 
promote_hyp, 
hypothesis_subsumption, 
productElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}[p:iPolynomial()].  (isPolyOne(p)  \mmember{}  \mBbbB{})
Date html generated:
2017_09_29-PM-05_52_12
Last ObjectModification:
2017_05_03-AM-11_31_13
Theory : omega
Home
Index