Nuprl Lemma : member-rev-append
∀[T:Type]. ∀x:T. ∀as,bs:T List.  ((x ∈ rev(as) + bs) 
⇐⇒ (x ∈ as) ∨ (x ∈ bs))
Proof
Definitions occuring in Statement : 
l_member: (x ∈ l)
, 
rev-append: rev(as) + bs
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
or: P ∨ Q
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
reverse: rev(as)
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
rev-append-property, 
l_member_wf, 
member_append, 
reverse_wf, 
member-reverse, 
append_wf, 
list_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
sqequalRule, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
Error :memTop, 
hypothesis, 
independent_pairFormation, 
unionIsType, 
universeIsType, 
hypothesisEquality, 
because_Cache, 
productElimination, 
independent_functionElimination, 
dependent_functionElimination, 
unionElimination, 
inlFormation_alt, 
inrFormation_alt, 
promote_hyp, 
instantiate, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}x:T.  \mforall{}as,bs:T  List.    ((x  \mmember{}  rev(as)  +  bs)  \mLeftarrow{}{}\mRightarrow{}  (x  \mmember{}  as)  \mvee{}  (x  \mmember{}  bs))
Date html generated:
2020_05_19-PM-09_38_10
Last ObjectModification:
2020_01_25-AM-10_27_17
Theory : omega
Home
Index