Nuprl Lemma : bottom-member-approx-type
∀[T:Type]. (T 
⇒ (⊥ ∈ approx-type(T)))
Proof
Definitions occuring in Statement : 
approx-type: approx-type(T)
, 
bottom: ⊥
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uimplies: b supposing a
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
exists: ∃x:A. B[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
squash: ↓T
, 
top: Top
, 
cand: A c∧ B
Lemmas referenced : 
member-approx-type, 
equal-wf-base, 
sqle_wf_base, 
base_wf, 
exists_wf, 
squash_wf, 
bottom-sqle
Rules used in proof : 
universeEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
lambdaEquality, 
sqequalRule, 
hypothesisEquality, 
hypothesis, 
independent_isectElimination, 
productElimination, 
baseClosed, 
dependent_functionElimination, 
because_Cache, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
lambdaFormation, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
productEquality, 
pointwiseFunctionalityForEquality, 
rename, 
imageMemberEquality, 
independent_pairFormation, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
dependent_pairFormation
Latex:
\mforall{}[T:Type].  (T  {}\mRightarrow{}  (\mbot{}  \mmember{}  approx-type(T)))
Date html generated:
2018_05_21-PM-00_05_24
Last ObjectModification:
2017_12_30-PM-02_27_09
Theory : partial_1
Home
Index