Nuprl Lemma : bottom-member-approx-type

[T:Type]. (T  (⊥ ∈ approx-type(T)))


Proof




Definitions occuring in Statement :  approx-type: approx-type(T) bottom: uall: [x:A]. B[x] implies:  Q member: t ∈ T universe: Type
Definitions unfolded in proof :  uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q) all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] exists: x:A. B[x] so_apply: x[s] prop: so_lambda: λ2x.t[x] squash: T top: Top cand: c∧ B
Lemmas referenced :  member-approx-type equal-wf-base sqle_wf_base base_wf exists_wf squash_wf bottom-sqle
Rules used in proof :  universeEquality equalitySymmetry equalityTransitivity axiomEquality lambdaEquality sqequalRule hypothesisEquality hypothesis independent_isectElimination productElimination baseClosed dependent_functionElimination because_Cache thin isectElimination sqequalHypSubstitution extract_by_obid lambdaFormation cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution productEquality pointwiseFunctionalityForEquality rename imageMemberEquality independent_pairFormation voidEquality voidElimination isect_memberEquality dependent_pairFormation

Latex:
\mforall{}[T:Type].  (T  {}\mRightarrow{}  (\mbot{}  \mmember{}  approx-type(T)))



Date html generated: 2018_05_21-PM-00_05_24
Last ObjectModification: 2017_12_30-PM-02_27_09

Theory : partial_1


Home Index