Nuprl Lemma : bottom-pair-member-approx-type

[A,B:Type].  (A   (<⊥, ⊥> ∈ approx-type(A × B)))


Proof




Definitions occuring in Statement :  approx-type: approx-type(T) bottom: uall: [x:A]. B[x] implies:  Q member: t ∈ T pair: <a, b> product: x:A × B[x] universe: Type
Definitions unfolded in proof :  implies:  Q member: t ∈ T uall: [x:A]. B[x] uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q) all: x:A. B[x] squash: T prop: false: False not: ¬A cand: c∧ B exists: x:A. B[x]
Lemmas referenced :  approx-type_wf member-approx-type equal-wf-base sqle_wf_base is-exception_wf has-value_wf_base exception-not-bottom bottom_diverge
Rules used in proof :  isect_memberEquality universeEquality because_Cache equalitySymmetry equalityTransitivity axiomEquality dependent_functionElimination lambdaEquality sqequalRule hypothesis hypothesisEquality cumulativity productEquality thin isectElimination sqequalHypSubstitution extract_by_obid pointwiseFunctionalityForEquality rename lambdaFormation cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution independent_isectElimination productElimination baseClosed imageMemberEquality independent_pairEquality independent_pairFormation voidElimination independent_functionElimination sqleRule divergentSqle closedConclusion baseApply dependent_pairFormation

Latex:
\mforall{}[A,B:Type].    (A  {}\mRightarrow{}  B  {}\mRightarrow{}  (<\mbot{},  \mbot{}>  \mmember{}  approx-type(A  \mtimes{}  B)))



Date html generated: 2018_05_21-PM-00_05_27
Last ObjectModification: 2017_12_30-PM-02_28_40

Theory : partial_1


Home Index