Nuprl Lemma : inclusion-partial2

[T:Type]. ∀x:T. (x ∈ partial(T)) supposing value-type(T)


Proof




Definitions occuring in Statement :  partial: partial(T) value-type: value-type(T) uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] subtype_rel: A ⊆B
Lemmas referenced :  inclusion-partial value-type_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation hypothesisEquality applyEquality lemma_by_obid sqequalHypSubstitution isectElimination thin independent_isectElimination hypothesis sqequalRule lambdaEquality dependent_functionElimination axiomEquality equalityTransitivity equalitySymmetry because_Cache isect_memberEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}x:T.  (x  \mmember{}  partial(T))  supposing  value-type(T)



Date html generated: 2016_05_14-AM-06_09_32
Last ObjectModification: 2015_12_26-AM-11_52_22

Theory : partial_1


Home Index