Nuprl Lemma : inclusion-partial2
∀[T:Type]. ∀x:T. (x ∈ partial(T)) supposing value-type(T)
Proof
Definitions occuring in Statement : 
partial: partial(T)
, 
value-type: value-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
inclusion-partial, 
value-type_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
hypothesisEquality, 
applyEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
independent_isectElimination, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
isect_memberEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}x:T.  (x  \mmember{}  partial(T))  supposing  value-type(T)
Date html generated:
2016_05_14-AM-06_09_32
Last ObjectModification:
2015_12_26-AM-11_52_22
Theory : partial_1
Home
Index