Nuprl Lemma : partial-partial
∀[A:Type]. (partial(partial(A)) ⊆r partial(A))
Proof
Definitions occuring in Statement : 
partial: partial(T)
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
partial: partial(T)
, 
quotient: x,y:A//B[x; y]
, 
and: P ∧ Q
, 
so_lambda: λ2x y.t[x; y]
, 
base-partial: base-partial(T)
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
guard: {T}
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
per-partial: per-partial(T;x;y)
, 
cand: A c∧ B
, 
uiff: uiff(P;Q)
, 
label: ...$L... t
Lemmas referenced : 
partial_wf, 
quotient-member-eq, 
base-partial_wf, 
per-partial_wf, 
per-partial-equiv_rel, 
base-partial-partial, 
has-value_wf_base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
Error :lambdaEquality_alt, 
sqequalHypSubstitution, 
pointwiseFunctionalityForEquality, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
pertypeElimination, 
productElimination, 
applyEquality, 
setElimination, 
rename, 
Error :inhabitedIsType, 
Error :universeIsType, 
because_Cache, 
independent_isectElimination, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
Error :productIsType, 
Error :equalityIsType4, 
axiomEquality, 
universeEquality, 
independent_pairFormation, 
promote_hyp
Latex:
\mforall{}[A:Type].  (partial(partial(A))  \msubseteq{}r  partial(A))
Date html generated:
2019_06_20-PM-00_33_47
Last ObjectModification:
2018_10_06-PM-03_50_22
Theory : partial_1
Home
Index