Nuprl Lemma : partial-partial

[A:Type]. (partial(partial(A)) ⊆partial(A))


Proof




Definitions occuring in Statement :  partial: partial(T) subtype_rel: A ⊆B uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B partial: partial(T) quotient: x,y:A//B[x; y] and: P ∧ Q so_lambda: λ2y.t[x; y] base-partial: base-partial(T) so_apply: x[s1;s2] uimplies: supposing a all: x:A. B[x] guard: {T} implies:  Q prop: per-partial: per-partial(T;x;y) cand: c∧ B uiff: uiff(P;Q) label: ...$L... t
Lemmas referenced :  partial_wf quotient-member-eq base-partial_wf per-partial_wf per-partial-equiv_rel base-partial-partial has-value_wf_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut Error :lambdaEquality_alt,  sqequalHypSubstitution pointwiseFunctionalityForEquality extract_by_obid isectElimination thin hypothesisEquality hypothesis sqequalRule pertypeElimination productElimination applyEquality setElimination rename Error :inhabitedIsType,  Error :universeIsType,  because_Cache independent_isectElimination dependent_functionElimination equalityTransitivity equalitySymmetry independent_functionElimination Error :productIsType,  Error :equalityIsType4,  axiomEquality universeEquality independent_pairFormation promote_hyp

Latex:
\mforall{}[A:Type].  (partial(partial(A))  \msubseteq{}r  partial(A))



Date html generated: 2019_06_20-PM-00_33_47
Last ObjectModification: 2018_10_06-PM-03_50_22

Theory : partial_1


Home Index