Nuprl Lemma : member-per-and
∀[A:Type]. ∀[B:Type supposing A]. ∀[a:A]. ∀[b:B].  (<a, b> ∈ per-and(A;B))
Proof
Definitions occuring in Statement : 
per-and: per-and(A;B)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
pair: <a, b>
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
, 
per-and: per-and(A;B)
, 
guard: {T}
, 
per-type-family: per-type-family(B)
Lemmas referenced : 
isect_subtype_rel_trivial, 
subtype_rel_self, 
member-per-product, 
per-type-family_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
hypothesisEquality, 
applyEquality, 
thin, 
sqequalRule, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
cumulativity, 
because_Cache, 
lambdaEquality, 
universeEquality, 
independent_isectElimination, 
independent_pairFormation, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isectEquality
Latex:
\mforall{}[A:Type].  \mforall{}[B:Type  supposing  A].  \mforall{}[a:A].  \mforall{}[b:B].    (<a,  b>  \mmember{}  per-and(A;B))
Date html generated:
2019_06_20-AM-11_30_23
Last ObjectModification:
2018_08_22-PM-01_47_22
Theory : per!type
Home
Index