Nuprl Lemma : member-per-and

[A:Type]. ∀[B:Type supposing A]. ∀[a:A]. ∀[b:B].  (<a, b> ∈ per-and(A;B))


Proof




Definitions occuring in Statement :  per-and: per-and(A;B) uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T pair: <a, b> universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] exists: x:A. B[x] per-and: per-and(A;B) guard: {T} per-type-family: per-type-family(B)
Lemmas referenced :  isect_subtype_rel_trivial subtype_rel_self member-per-product per-type-family_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut hypothesisEquality applyEquality thin sqequalRule instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination cumulativity because_Cache lambdaEquality universeEquality independent_isectElimination independent_pairFormation hypothesis axiomEquality equalityTransitivity equalitySymmetry isectEquality

Latex:
\mforall{}[A:Type].  \mforall{}[B:Type  supposing  A].  \mforall{}[a:A].  \mforall{}[b:B].    (<a,  b>  \mmember{}  per-and(A;B))



Date html generated: 2019_06_20-AM-11_30_23
Last ObjectModification: 2018_08_22-PM-01_47_22

Theory : per!type


Home Index