Nuprl Lemma : member-per-product
∀[A:Type]. ∀[B:per-function(A;a.Type)]. ∀[a:A]. ∀[b:B[a]].  (<a, b> ∈ per-product(A;a.B[a]))
Proof
Definitions occuring in Statement : 
per-product: per-product(A;a.B[a])
, 
per-function: per-function(A;a.B[a])
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
pair: <a, b>
, 
universe: Type
Definitions unfolded in proof : 
type-function: type-function{i:l}(A)
, 
so_apply: x[s]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
per-product: per-product(A;a.B[a])
, 
squash: ↓T
, 
prop: ℙ
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
true: True
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
uand: uand(A;B)
, 
has-value: (a)↓
, 
top: Top
, 
and: P ∧ Q
Lemmas referenced : 
apply_wf_type-function, 
per-product_wf, 
per-function_wf_type, 
member_wf, 
squash_wf, 
true_wf, 
equal_wf, 
subtype_rel_self, 
equal-wf-base, 
has-value_wf_base, 
is-exception_wf, 
top_wf, 
base_wf, 
and_wf
Rules used in proof : 
universeEquality, 
sqequalRule, 
equalitySymmetry, 
hypothesis, 
equalityTransitivity, 
because_Cache, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
pointwiseFunctionality, 
applyEquality, 
lambdaEquality, 
imageElimination, 
pertypeMemberEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
natural_numberEquality, 
imageMemberEquality, 
instantiate, 
axiomSqEquality, 
axiomEquality, 
isect_memberEquality, 
axiomSqleEquality, 
rename, 
isaxiomCases, 
divergentSqle, 
voidElimination, 
voidEquality, 
hyp_replacement, 
productElimination, 
setElimination, 
applyLambdaEquality, 
independent_pairFormation, 
dependent_set_memberEquality
Latex:
\mforall{}[A:Type].  \mforall{}[B:per-function(A;a.Type)].  \mforall{}[a:A].  \mforall{}[b:B[a]].    (<a,  b>  \mmember{}  per-product(A;a.B[a]))
Date html generated:
2019_06_20-AM-11_30_20
Last ObjectModification:
2018_08_04-PM-03_40_18
Theory : per!type
Home
Index