Nuprl Lemma : member-per-product

[A:Type]. ∀[B:per-function(A;a.Type)]. ∀[a:A]. ∀[b:B[a]].  (<a, b> ∈ per-product(A;a.B[a]))


Proof




Definitions occuring in Statement :  per-product: per-product(A;a.B[a]) per-function: per-function(A;a.B[a]) uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T pair: <a, b> universe: Type
Definitions unfolded in proof :  type-function: type-function{i:l}(A) so_apply: x[s] member: t ∈ T uall: [x:A]. B[x] per-product: per-product(A;a.B[a]) squash: T prop: pi1: fst(t) pi2: snd(t) true: True subtype_rel: A ⊆B uimplies: supposing a uand: uand(A;B) has-value: (a)↓ top: Top and: P ∧ Q
Lemmas referenced :  apply_wf_type-function per-product_wf per-function_wf_type member_wf squash_wf true_wf equal_wf subtype_rel_self equal-wf-base has-value_wf_base is-exception_wf top_wf base_wf and_wf
Rules used in proof :  universeEquality sqequalRule equalitySymmetry hypothesis equalityTransitivity because_Cache hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution pointwiseFunctionality applyEquality lambdaEquality imageElimination pertypeMemberEquality baseApply closedConclusion baseClosed natural_numberEquality imageMemberEquality instantiate axiomSqEquality axiomEquality isect_memberEquality axiomSqleEquality rename isaxiomCases divergentSqle voidElimination voidEquality hyp_replacement productElimination setElimination applyLambdaEquality independent_pairFormation dependent_set_memberEquality

Latex:
\mforall{}[A:Type].  \mforall{}[B:per-function(A;a.Type)].  \mforall{}[a:A].  \mforall{}[b:B[a]].    (<a,  b>  \mmember{}  per-product(A;a.B[a]))



Date html generated: 2019_06_20-AM-11_30_20
Last ObjectModification: 2018_08_04-PM-03_40_18

Theory : per!type


Home Index