Nuprl Lemma : per-union_wf

[A,B:Type].  (per-union(A;B) ∈ Type)


Proof




Definitions occuring in Statement :  per-union: per-union(A;B) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T prop: uimplies: supposing a uand: uand(A;B) has-value: (a)↓ top: Top per-union: per-union(A;B) outl: outl(x) outr: outr(x) implies:  Q guard: {T}
Lemmas referenced :  uand_wf has-value_wf_base is-exception_wf istype-top istype-void equal-wf-base per-void_wf sqle_wf_base istype-universe if-per-void
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry Error :inhabitedIsType,  hypothesisEquality Error :isect_memberEquality_alt,  isectElimination thin Error :universeIsType,  universeEquality extract_by_obid isectEquality because_Cache baseClosed axiomSqleEquality divergentSqle sqleReflexivity rename isaxiomCases independent_isectElimination promote_hyp axiomSqEquality voidElimination pertypeEquality isinlCases baseApply closedConclusion isinrCases Error :lambdaFormation_alt,  Error :isectIsType,  Error :equalityIsType4,  independent_functionElimination

Latex:
\mforall{}[A,B:Type].    (per-union(A;B)  \mmember{}  Type)



Date html generated: 2019_06_20-AM-11_30_41
Last ObjectModification: 2018_10_07-PM-08_29_40

Theory : per!type


Home Index