Nuprl Lemma : per-union_wf
∀[A,B:Type].  (per-union(A;B) ∈ Type)
Proof
Definitions occuring in Statement : 
per-union: per-union(A;B)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
uimplies: b supposing a
, 
uand: uand(A;B)
, 
has-value: (a)↓
, 
top: Top
, 
per-union: per-union(A;B)
, 
outl: outl(x)
, 
outr: outr(x)
, 
implies: P 
⇒ Q
, 
guard: {T}
Lemmas referenced : 
uand_wf, 
has-value_wf_base, 
is-exception_wf, 
istype-top, 
istype-void, 
equal-wf-base, 
per-void_wf, 
sqle_wf_base, 
istype-universe, 
if-per-void
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :inhabitedIsType, 
hypothesisEquality, 
Error :isect_memberEquality_alt, 
isectElimination, 
thin, 
Error :universeIsType, 
universeEquality, 
extract_by_obid, 
isectEquality, 
because_Cache, 
baseClosed, 
axiomSqleEquality, 
divergentSqle, 
sqleReflexivity, 
rename, 
isaxiomCases, 
independent_isectElimination, 
promote_hyp, 
axiomSqEquality, 
voidElimination, 
pertypeEquality, 
isinlCases, 
baseApply, 
closedConclusion, 
isinrCases, 
Error :lambdaFormation_alt, 
Error :isectIsType, 
Error :equalityIsType4, 
independent_functionElimination
Latex:
\mforall{}[A,B:Type].    (per-union(A;B)  \mmember{}  Type)
Date html generated:
2019_06_20-AM-11_30_41
Last ObjectModification:
2018_10_07-PM-08_29_40
Theory : per!type
Home
Index