Nuprl Lemma : equiv-class_wf
∀[A:Type]. ∀[E:A ⟶ A ⟶ 𝔹].
  ∀[t:x,y:A//(↑E[x;y])]. (equiv-class(A;x,y.E[x;y];t) ∈ Type) supposing EquivRel(A;x,y.↑E[x;y])
Proof
Definitions occuring in Statement : 
equiv-class: equiv-class(A;a,b.E[a; b];t)
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
quotient: x,y:A//B[x; y]
, 
assert: ↑b
, 
bool: 𝔹
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s1;s2]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
quotient: x,y:A//B[x; y]
, 
and: P ∧ Q
, 
equiv-class: equiv-class(A;a,b.E[a; b];t)
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
rev_implies: P 
⇐ Q
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
trans: Trans(T;x,y.E[x; y])
, 
all: ∀x:A. B[x]
, 
sym: Sym(T;x,y.E[x; y])
Lemmas referenced : 
assert_wf, 
squash_wf, 
true_wf, 
bool_wf, 
equal-wf-base, 
quotient_wf, 
equiv_rel_wf, 
iff_imp_equal_bool
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
pointwiseFunctionalityForEquality, 
universeEquality, 
sqequalHypSubstitution, 
sqequalRule, 
pertypeElimination, 
productElimination, 
thin, 
setEquality, 
hypothesisEquality, 
applyEquality, 
lambdaEquality, 
imageElimination, 
extract_by_obid, 
isectElimination, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
productEquality, 
because_Cache, 
functionExtensionality, 
cumulativity, 
axiomEquality, 
independent_isectElimination, 
isect_memberEquality, 
functionEquality, 
independent_pairFormation, 
lambdaFormation, 
dependent_functionElimination, 
independent_functionElimination
Latex:
\mforall{}[A:Type].  \mforall{}[E:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbB{}].
    \mforall{}[t:x,y:A//(\muparrow{}E[x;y])].  (equiv-class(A;x,y.E[x;y];t)  \mmember{}  Type)  supposing  EquivRel(A;x,y.\muparrow{}E[x;y])
Date html generated:
2016_10_21-AM-09_43_50
Last ObjectModification:
2016_08_07-PM-06_00_35
Theory : quot_1
Home
Index