Nuprl Lemma : equiv-class_wf

[A:Type]. ∀[E:A ⟶ A ⟶ 𝔹].
  ∀[t:x,y:A//(↑E[x;y])]. (equiv-class(A;x,y.E[x;y];t) ∈ Type) supposing EquivRel(A;x,y.↑E[x;y])


Proof




Definitions occuring in Statement :  equiv-class: equiv-class(A;a,b.E[a; b];t) equiv_rel: EquivRel(T;x,y.E[x; y]) quotient: x,y:A//B[x; y] assert: b bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s1;s2] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a quotient: x,y:A//B[x; y] and: P ∧ Q equiv-class: equiv-class(A;a,b.E[a; b];t) squash: T prop: true: True subtype_rel: A ⊆B so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] iff: ⇐⇒ Q implies:  Q rev_implies:  Q equiv_rel: EquivRel(T;x,y.E[x; y]) trans: Trans(T;x,y.E[x; y]) all: x:A. B[x] sym: Sym(T;x,y.E[x; y])
Lemmas referenced :  assert_wf squash_wf true_wf bool_wf equal-wf-base quotient_wf equiv_rel_wf iff_imp_equal_bool
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut pointwiseFunctionalityForEquality universeEquality sqequalHypSubstitution sqequalRule pertypeElimination productElimination thin setEquality hypothesisEquality applyEquality lambdaEquality imageElimination extract_by_obid isectElimination equalityTransitivity hypothesis equalitySymmetry natural_numberEquality imageMemberEquality baseClosed productEquality because_Cache functionExtensionality cumulativity axiomEquality independent_isectElimination isect_memberEquality functionEquality independent_pairFormation lambdaFormation dependent_functionElimination independent_functionElimination

Latex:
\mforall{}[A:Type].  \mforall{}[E:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbB{}].
    \mforall{}[t:x,y:A//(\muparrow{}E[x;y])].  (equiv-class(A;x,y.E[x;y];t)  \mmember{}  Type)  supposing  EquivRel(A;x,y.\muparrow{}E[x;y])



Date html generated: 2016_10_21-AM-09_43_50
Last ObjectModification: 2016_08_07-PM-06_00_35

Theory : quot_1


Home Index