Nuprl Lemma : equiv_rel_quotient
∀[T:Type]. ∀[E1,E2:T ⟶ T ⟶ 𝔹].
  (EquivRel(T;x,y.↑E2[x;y])
  
⇒ EquivRel(T;x,y.↑E1[x;y])
  
⇒ (∀x,y:T.  ((↑E2[x;y]) 
⇒ (↑E1[x;y])))
  
⇒ EquivRel(x,y:T//(↑E2[x;y]);x,y.↑E1[x;y]))
Proof
Definitions occuring in Statement : 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
quotient: x,y:A//B[x; y]
, 
assert: ↑b
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
and: P ∧ Q
, 
refl: Refl(T;x,y.E[x; y])
, 
all: ∀x:A. B[x]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
, 
cand: A c∧ B
, 
sym: Sym(T;x,y.E[x; y])
, 
prop: ℙ
, 
trans: Trans(T;x,y.E[x; y])
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
quotient: x,y:A//B[x; y]
, 
subtype_rel: A ⊆r B
, 
guard: {T}
Lemmas referenced : 
equiv_rel-wf-quotient, 
quotient_wf, 
assert_wf, 
assert_witness, 
all_wf, 
equiv_rel_wf, 
bool_wf, 
subtype_quotient, 
equal-wf-base, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
independent_pairFormation, 
cumulativity, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
independent_isectElimination, 
because_Cache, 
functionEquality, 
universeEquality, 
pointwiseFunctionalityForEquality, 
pertypeElimination, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
productEquality, 
dependent_functionElimination, 
rename
Latex:
\mforall{}[T:Type].  \mforall{}[E1,E2:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbB{}].
    (EquivRel(T;x,y.\muparrow{}E2[x;y])
    {}\mRightarrow{}  EquivRel(T;x,y.\muparrow{}E1[x;y])
    {}\mRightarrow{}  (\mforall{}x,y:T.    ((\muparrow{}E2[x;y])  {}\mRightarrow{}  (\muparrow{}E1[x;y])))
    {}\mRightarrow{}  EquivRel(x,y:T//(\muparrow{}E2[x;y]);x,y.\muparrow{}E1[x;y]))
Date html generated:
2017_04_14-AM-07_39_44
Last ObjectModification:
2017_02_27-PM-03_12_30
Theory : quot_1
Home
Index