Nuprl Lemma : injective-quotient-inject

[T,S:Type]. ∀[f:T ⟶ S].  Inj(T//x.f[x];S;λx.f[x])


Proof




Definitions occuring in Statement :  injective-quotient: T//x.f[x] inject: Inj(A;B;f) uall: [x:A]. B[x] so_apply: x[s] lambda: λx.A[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  so_apply: x[s] uall: [x:A]. B[x] member: t ∈ T guard: {T} inject: Inj(A;B;f) all: x:A. B[x] implies:  Q so_lambda: λ2x.t[x] injective-quotient: T//x.f[x] quotient: x,y:A//B[x; y] and: P ∧ Q so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a equiv_rel: EquivRel(T;x,y.E[x; y]) refl: Refl(T;x,y.E[x; y]) sym: Sym(T;x,y.E[x; y]) trans: Trans(T;x,y.E[x; y])
Lemmas referenced :  injective-quotient-typing istype-universe injective-quotient_wf quotient-member-eq equal_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut introduction extract_by_obid Error :isect_memberFormation_alt,  hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality Error :functionIsType,  Error :universeIsType,  Error :inhabitedIsType,  instantiate universeEquality Error :lambdaFormation_alt,  Error :equalityIstype,  applyEquality equalityTransitivity equalitySymmetry because_Cache Error :lambdaEquality_alt,  pointwiseFunctionalityForEquality pertypeElimination promote_hyp productElimination independent_isectElimination dependent_functionElimination independent_functionElimination Error :productIsType,  sqequalBase independent_pairFormation

Latex:
\mforall{}[T,S:Type].  \mforall{}[f:T  {}\mrightarrow{}  S].    Inj(T//x.f[x];S;\mlambda{}x.f[x])



Date html generated: 2019_06_20-PM-00_33_07
Last ObjectModification: 2018_12_19-PM-05_30_19

Theory : quot_1


Home Index