Nuprl Lemma : injective-quotient-typing
∀[T,S:Type]. ∀[f:T ⟶ S].  (f ∈ T//x.f[x] ⟶ S)
Proof
Definitions occuring in Statement : 
injective-quotient: T//x.f[x]
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
injective-quotient: T//x.f[x]
, 
quotient: x,y:A//B[x; y]
, 
and: P ∧ Q
, 
prop: ℙ
Lemmas referenced : 
injective-quotient_wf, 
equal-wf-base, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
functionExtensionality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
isect_memberEquality, 
because_Cache, 
universeEquality, 
pointwiseFunctionalityForEquality, 
pertypeElimination, 
productElimination, 
productEquality
Latex:
\mforall{}[T,S:Type].  \mforall{}[f:T  {}\mrightarrow{}  S].    (f  \mmember{}  T//x.f[x]  {}\mrightarrow{}  S)
Date html generated:
2017_04_14-AM-07_40_08
Last ObjectModification:
2017_02_27-PM-03_11_23
Theory : quot_1
Home
Index