Nuprl Lemma : injective-quotient-typing

[T,S:Type]. ∀[f:T ⟶ S].  (f ∈ T//x.f[x] ⟶ S)


Proof




Definitions occuring in Statement :  injective-quotient: T//x.f[x] uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] injective-quotient: T//x.f[x] quotient: x,y:A//B[x; y] and: P ∧ Q prop:
Lemmas referenced :  injective-quotient_wf equal-wf-base equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut functionExtensionality extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality sqequalRule lambdaEquality applyEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry functionEquality isect_memberEquality because_Cache universeEquality pointwiseFunctionalityForEquality pertypeElimination productElimination productEquality

Latex:
\mforall{}[T,S:Type].  \mforall{}[f:T  {}\mrightarrow{}  S].    (f  \mmember{}  T//x.f[x]  {}\mrightarrow{}  S)



Date html generated: 2017_04_14-AM-07_40_08
Last ObjectModification: 2017_02_27-PM-03_11_23

Theory : quot_1


Home Index