Nuprl Lemma : injective-quotient_wf
∀[T,S:Type]. ∀[f:T ⟶ S].  (T//x.f[x] ∈ Type)
Proof
Definitions occuring in Statement : 
injective-quotient: T//x.f[x]
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
injective-quotient: T//x.f[x]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s]
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
and: P ∧ Q
, 
refl: Refl(T;x,y.E[x; y])
, 
all: ∀x:A. B[x]
, 
sym: Sym(T;x,y.E[x; y])
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
trans: Trans(T;x,y.E[x; y])
Lemmas referenced : 
quotient_wf, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
because_Cache, 
hypothesis, 
independent_isectElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
isect_memberEquality, 
universeEquality, 
independent_pairFormation, 
lambdaFormation
Latex:
\mforall{}[T,S:Type].  \mforall{}[f:T  {}\mrightarrow{}  S].    (T//x.f[x]  \mmember{}  Type)
Date html generated:
2016_10_21-AM-09_43_54
Last ObjectModification:
2016_08_08-PM-05_03_59
Theory : quot_1
Home
Index