Nuprl Lemma : injective-quotient_wf

[T,S:Type]. ∀[f:T ⟶ S].  (T//x.f[x] ∈ Type)


Proof




Definitions occuring in Statement :  injective-quotient: T//x.f[x] uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T injective-quotient: T//x.f[x] so_lambda: λ2y.t[x; y] so_apply: x[s] so_apply: x[s1;s2] uimplies: supposing a equiv_rel: EquivRel(T;x,y.E[x; y]) and: P ∧ Q refl: Refl(T;x,y.E[x; y]) all: x:A. B[x] sym: Sym(T;x,y.E[x; y]) implies:  Q prop: trans: Trans(T;x,y.E[x; y])
Lemmas referenced :  quotient_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality lambdaEquality applyEquality functionExtensionality because_Cache hypothesis independent_isectElimination axiomEquality equalityTransitivity equalitySymmetry functionEquality isect_memberEquality universeEquality independent_pairFormation lambdaFormation

Latex:
\mforall{}[T,S:Type].  \mforall{}[f:T  {}\mrightarrow{}  S].    (T//x.f[x]  \mmember{}  Type)



Date html generated: 2016_10_21-AM-09_43_54
Last ObjectModification: 2016_08_08-PM-05_03_59

Theory : quot_1


Home Index