Nuprl Lemma : quot_elim
∀[T:Type]. ∀[E:T ⟶ T ⟶ ℙ].  (EquivRel(T;x,y.E[x;y]) 
⇒ (∀a,b:T.  (a = b ∈ (x,y:T//E[x;y]) 
⇐⇒ ↓E[a;b])))
Proof
Definitions occuring in Statement : 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
quotient: x,y:A//B[x; y]
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
squash: ↓T
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
squash: ↓T
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
rev_implies: P 
⇐ Q
, 
prop: ℙ
, 
quotient: x,y:A//B[x; y]
, 
cand: A c∧ B
Lemmas referenced : 
quotient_wf, 
subtype_quotient, 
squash_wf, 
istype-universe, 
equiv_rel_wf, 
subtype_rel_self, 
quotient-member-eq
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
Error :lambdaFormation_alt, 
independent_pairFormation, 
hypothesis, 
sqequalHypSubstitution, 
imageElimination, 
sqequalRule, 
imageMemberEquality, 
hypothesisEquality, 
thin, 
baseClosed, 
Error :equalityIsType1, 
Error :universeIsType, 
extract_by_obid, 
isectElimination, 
Error :lambdaEquality_alt, 
applyEquality, 
Error :inhabitedIsType, 
independent_isectElimination, 
dependent_functionElimination, 
productElimination, 
independent_pairEquality, 
Error :functionIsTypeImplies, 
axiomEquality, 
Error :functionIsType, 
universeEquality, 
Error :isect_memberEquality_alt, 
pertypeElimination, 
Error :productIsType, 
because_Cache, 
instantiate, 
independent_functionElimination, 
lambdaEquality
Latex:
\mforall{}[T:Type].  \mforall{}[E:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    (EquivRel(T;x,y.E[x;y])  {}\mRightarrow{}  (\mforall{}a,b:T.    (a  =  b  \mLeftarrow{}{}\mRightarrow{}  \mdownarrow{}E[a;b])))
Date html generated:
2019_06_20-PM-00_32_10
Last ObjectModification:
2018_10_06-PM-03_56_26
Theory : quot_1
Home
Index