Nuprl Lemma : quot_elim

[T:Type]. ∀[E:T ⟶ T ⟶ ℙ].  (EquivRel(T;x,y.E[x;y])  (∀a,b:T.  (a b ∈ (x,y:T//E[x;y]) ⇐⇒ ↓E[a;b])))


Proof




Definitions occuring in Statement :  equiv_rel: EquivRel(T;x,y.E[x; y]) quotient: x,y:A//B[x; y] uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] iff: ⇐⇒ Q squash: T implies:  Q function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q squash: T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a subtype_rel: A ⊆B rev_implies:  Q prop: quotient: x,y:A//B[x; y] cand: c∧ B
Lemmas referenced :  quotient_wf subtype_quotient squash_wf istype-universe equiv_rel_wf subtype_rel_self quotient-member-eq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut Error :lambdaFormation_alt,  independent_pairFormation hypothesis sqequalHypSubstitution imageElimination sqequalRule imageMemberEquality hypothesisEquality thin baseClosed Error :equalityIsType1,  Error :universeIsType,  extract_by_obid isectElimination Error :lambdaEquality_alt,  applyEquality Error :inhabitedIsType,  independent_isectElimination dependent_functionElimination productElimination independent_pairEquality Error :functionIsTypeImplies,  axiomEquality Error :functionIsType,  universeEquality Error :isect_memberEquality_alt,  pertypeElimination Error :productIsType,  because_Cache instantiate independent_functionElimination lambdaEquality

Latex:
\mforall{}[T:Type].  \mforall{}[E:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    (EquivRel(T;x,y.E[x;y])  {}\mRightarrow{}  (\mforall{}a,b:T.    (a  =  b  \mLeftarrow{}{}\mRightarrow{}  \mdownarrow{}E[a;b])))



Date html generated: 2019_06_20-PM-00_32_10
Last ObjectModification: 2018_10_06-PM-03_56_26

Theory : quot_1


Home Index