Nuprl Lemma : quotient-mono
∀[T:Type]. (mono(T) 
⇒ (∀E:T ⟶ T ⟶ ℙ. (EquivRel(T;x,y.E[x;y]) 
⇒ mono(x,y:T//E[x;y]))))
Proof
Definitions occuring in Statement : 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
mono: mono(T)
, 
quotient: x,y:A//B[x; y]
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
mono: mono(T)
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
, 
prop: ℙ
, 
quotient: x,y:A//B[x; y]
, 
and: P ∧ Q
, 
is-above: is-above(T;a;z)
, 
exists: ∃x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
cand: A c∧ B
, 
trans: Trans(T;x,y.E[x; y])
, 
sym: Sym(T;x,y.E[x; y])
, 
refl: Refl(T;x,y.E[x; y])
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
Lemmas referenced : 
is-above_wf, 
quotient_wf, 
istype-base, 
equiv_rel_wf, 
mono_wf, 
istype-universe, 
subtype_rel_self, 
sqle_wf_base, 
quotient-member-eq
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
Error :lambdaFormation_alt, 
hypothesis, 
Error :universeIsType, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
Error :lambdaEquality_alt, 
applyEquality, 
because_Cache, 
independent_isectElimination, 
Error :inhabitedIsType, 
Error :functionIsType, 
universeEquality, 
dependent_functionElimination, 
axiomEquality, 
Error :functionIsTypeImplies, 
instantiate, 
pointwiseFunctionalityForEquality, 
pertypeElimination, 
productElimination, 
Error :productIsType, 
Error :equalityIstype, 
sqequalBase, 
equalitySymmetry, 
equalityTransitivity, 
Error :equalityIsType2, 
independent_pairFormation, 
Error :dependent_pairFormation_alt, 
independent_functionElimination, 
applyLambdaEquality, 
hyp_replacement
Latex:
\mforall{}[T:Type].  (mono(T)  {}\mRightarrow{}  (\mforall{}E:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}.  (EquivRel(T;x,y.E[x;y])  {}\mRightarrow{}  mono(x,y:T//E[x;y]))))
Date html generated:
2019_06_20-PM-00_32_22
Last ObjectModification:
2018_11_24-AM-09_34_59
Theory : quot_1
Home
Index