Nuprl Lemma : quotient-top-union-top

(Top Top) ⋂ Base ⊆(Top Top)


Proof




Definitions occuring in Statement :  isect2: T1 ⋂ T2 quotient: x,y:A//B[x; y] subtype_rel: A ⊆B top: Top true: True union: left right base: Base
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a guard: {T} uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  quotient-isect-base top_wf true_wf equiv_rel_true isect2_wf quotient_wf base_wf isect2_subtype_rel subtype_rel_functionality_wrt_iff ext-eq_weakening
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin unionEquality hypothesis sqequalRule lambdaEquality independent_isectElimination because_Cache productElimination

Latex:
\00D9(Top  +  Top)  \mcap{}  Base  \msubseteq{}r  (Top  +  Top)



Date html generated: 2018_05_21-PM-00_04_54
Last ObjectModification: 2018_05_19-AM-07_09_57

Theory : quot_1


Home Index