Nuprl Lemma : quotient-top-union-top
⇃(Top + Top) ⋂ Base ⊆r (Top + Top)
Proof
Definitions occuring in Statement : 
isect2: T1 ⋂ T2
, 
quotient: x,y:A//B[x; y]
, 
subtype_rel: A ⊆r B
, 
top: Top
, 
true: True
, 
union: left + right
, 
base: Base
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
, 
guard: {T}
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
quotient-isect-base, 
top_wf, 
true_wf, 
equiv_rel_true, 
isect2_wf, 
quotient_wf, 
base_wf, 
isect2_subtype_rel, 
subtype_rel_functionality_wrt_iff, 
ext-eq_weakening
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
unionEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
independent_isectElimination, 
because_Cache, 
productElimination
Latex:
\00D9(Top  +  Top)  \mcap{}  Base  \msubseteq{}r  (Top  +  Top)
Date html generated:
2018_05_21-PM-00_04_54
Last ObjectModification:
2018_05_19-AM-07_09_57
Theory : quot_1
Home
Index