Nuprl Lemma : subtype_rel_quotient
∀[A,B:Type]. ∀[E:B ⟶ B ⟶ ℙ].  ((x,y:A//E[x;y]) ⊆r (x,y:B//E[x;y])) supposing (EquivRel(B;x,y.E[x;y]) and (A ⊆r B))
Proof
Definitions occuring in Statement : 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
quotient: x,y:A//B[x; y]
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
quotient: x,y:A//B[x; y]
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
guard: {T}
Lemmas referenced : 
quotient_wf, 
equiv_rel_subtype, 
equiv_rel_wf, 
subtype_rel_wf, 
quotient-member-eq, 
equal-wf-base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
sqequalRule, 
applyEquality, 
hypothesis, 
because_Cache, 
independent_isectElimination, 
universeEquality, 
independent_functionElimination, 
axiomEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
pointwiseFunctionalityForEquality, 
pertypeElimination, 
productElimination, 
dependent_functionElimination, 
productEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[E:B  {}\mrightarrow{}  B  {}\mrightarrow{}  \mBbbP{}].
    ((x,y:A//E[x;y])  \msubseteq{}r  (x,y:B//E[x;y]))  supposing  (EquivRel(B;x,y.E[x;y])  and  (A  \msubseteq{}r  B))
Date html generated:
2016_05_14-AM-06_08_05
Last ObjectModification:
2015_12_26-AM-11_48_32
Theory : quot_1
Home
Index