Nuprl Lemma : locally-ranked-induction

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].
  (Trans(T;x,y.R[y;x])
   (∀k:ℕ. ∀rank:T ⟶ ℕ. ∀l:T ⟶ ℕk.
        ((∀x,y:T.  (((l x) (l y) ∈ ℤ R[x;y]  rank x < rank y))  (∀[Q:T ⟶ ℙ]. TI(T;x,y.R[y;x];x.Q[x])))))


Proof




Definitions occuring in Statement :  trans: Trans(T;x,y.E[x; y]) TI: TI(T;x,y.R[x; y];t.Q[t]) int_seg: {i..j-} nat: less_than: a < b uall: [x:A]. B[x] prop: so_apply: x[s1;s2] so_apply: x[s] all: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x] natural_number: $n int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q all: x:A. B[x] so_lambda: λ2x.t[x] prop: subtype_rel: A ⊆B so_apply: x[s1;s2] nat: so_apply: x[s] so_lambda: λ2y.t[x; y] uimplies: supposing a
Lemmas referenced :  locally-ranked-is-well-founded all_wf equal_wf less_than_wf nat_wf int_seg_wf trans_wf tcWO-induction
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaFormation independent_functionElimination dependent_functionElimination cumulativity sqequalRule lambdaEquality because_Cache functionEquality intEquality applyEquality functionExtensionality universeEquality setElimination rename natural_numberEquality independent_isectElimination

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    (Trans(T;x,y.R[y;x])
    {}\mRightarrow{}  (\mforall{}k:\mBbbN{}.  \mforall{}rank:T  {}\mrightarrow{}  \mBbbN{}.  \mforall{}l:T  {}\mrightarrow{}  \mBbbN{}k.
                ((\mforall{}x,y:T.    (((l  x)  =  (l  y))  {}\mRightarrow{}  R[x;y]  {}\mRightarrow{}  rank  x  <  rank  y))
                {}\mRightarrow{}  (\mforall{}[Q:T  {}\mrightarrow{}  \mBbbP{}].  TI(T;x,y.R[y;x];x.Q[x])))))



Date html generated: 2017_04_14-AM-07_38_02
Last ObjectModification: 2017_02_27-PM-03_09_50

Theory : rel_1


Home Index