Nuprl Lemma : locally-ranked-induction
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].
(Trans(T;x,y.R[y;x])
⇒ (∀k:ℕ. ∀rank:T ⟶ ℕ. ∀l:T ⟶ ℕk.
((∀x,y:T. (((l x) = (l y) ∈ ℤ)
⇒ R[x;y]
⇒ rank x < rank y))
⇒ (∀[Q:T ⟶ ℙ]. TI(T;x,y.R[y;x];x.Q[x])))))
Proof
Definitions occuring in Statement :
trans: Trans(T;x,y.E[x; y])
,
TI: TI(T;x,y.R[x; y];t.Q[t])
,
int_seg: {i..j-}
,
nat: ℕ
,
less_than: a < b
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
so_apply: x[s1;s2]
,
so_apply: x[s]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
apply: f a
,
function: x:A ⟶ B[x]
,
natural_number: $n
,
int: ℤ
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
implies: P
⇒ Q
,
all: ∀x:A. B[x]
,
so_lambda: λ2x.t[x]
,
prop: ℙ
,
subtype_rel: A ⊆r B
,
so_apply: x[s1;s2]
,
nat: ℕ
,
so_apply: x[s]
,
so_lambda: λ2x y.t[x; y]
,
uimplies: b supposing a
Lemmas referenced :
locally-ranked-is-well-founded,
all_wf,
equal_wf,
less_than_wf,
nat_wf,
int_seg_wf,
trans_wf,
tcWO-induction
Rules used in proof :
cut,
introduction,
extract_by_obid,
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
hypothesis,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
lambdaFormation,
independent_functionElimination,
dependent_functionElimination,
cumulativity,
sqequalRule,
lambdaEquality,
because_Cache,
functionEquality,
intEquality,
applyEquality,
functionExtensionality,
universeEquality,
setElimination,
rename,
natural_numberEquality,
independent_isectElimination
Latex:
\mforall{}[T:Type]. \mforall{}[R:T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}].
(Trans(T;x,y.R[y;x])
{}\mRightarrow{} (\mforall{}k:\mBbbN{}. \mforall{}rank:T {}\mrightarrow{} \mBbbN{}. \mforall{}l:T {}\mrightarrow{} \mBbbN{}k.
((\mforall{}x,y:T. (((l x) = (l y)) {}\mRightarrow{} R[x;y] {}\mRightarrow{} rank x < rank y))
{}\mRightarrow{} (\mforall{}[Q:T {}\mrightarrow{} \mBbbP{}]. TI(T;x,y.R[y;x];x.Q[x])))))
Date html generated:
2017_04_14-AM-07_38_02
Last ObjectModification:
2017_02_27-PM-03_09_50
Theory : rel_1
Home
Index