Nuprl Lemma : trans_functionality_wrt_iff
∀[T:Type]. ∀[R,R':T ⟶ T ⟶ ℙ].  ((∀x,y:T.  (R[x;y] 
⇐⇒ R'[x;y])) 
⇒ (Trans(T;y,x.R[x;y]) 
⇐⇒ Trans(T;y,x.R'[x;y])))
Proof
Definitions occuring in Statement : 
trans: Trans(T;x,y.E[x; y])
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
trans: Trans(T;x,y.E[x; y])
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
rev_implies: P 
⇐ Q
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
trans_wf, 
subtype_rel_self, 
all_wf, 
iff_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
lambdaFormation, 
cut, 
independent_pairFormation, 
hypothesis, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
because_Cache, 
productElimination, 
independent_functionElimination, 
dependent_functionElimination, 
cumulativity, 
instantiate, 
universeEquality, 
functionEquality, 
Error :inhabitedIsType, 
Error :functionIsType, 
Error :universeIsType
Latex:
\mforall{}[T:Type].  \mforall{}[R,R':T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}x,y:T.    (R[x;y]  \mLeftarrow{}{}\mRightarrow{}  R'[x;y]))  {}\mRightarrow{}  (Trans(T;y,x.R[x;y])  \mLeftarrow{}{}\mRightarrow{}  Trans(T;y,x.R'[x;y])))
Date html generated:
2019_06_20-PM-00_28_46
Last ObjectModification:
2018_09_26-AM-11_46_35
Theory : rel_1
Home
Index