Nuprl Lemma : trans_functionality_wrt_iff

[T:Type]. ∀[R,R':T ⟶ T ⟶ ℙ].  ((∀x,y:T.  (R[x;y] ⇐⇒ R'[x;y]))  (Trans(T;y,x.R[x;y]) ⇐⇒ Trans(T;y,x.R'[x;y])))


Proof




Definitions occuring in Statement :  trans: Trans(T;x,y.E[x; y]) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] iff: ⇐⇒ Q implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q trans: Trans(T;x,y.E[x; y]) iff: ⇐⇒ Q and: P ∧ Q member: t ∈ T prop: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] rev_implies:  Q all: x:A. B[x] subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  trans_wf subtype_rel_self all_wf iff_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  lambdaFormation cut independent_pairFormation hypothesis introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule lambdaEquality applyEquality because_Cache productElimination independent_functionElimination dependent_functionElimination cumulativity instantiate universeEquality functionEquality Error :inhabitedIsType,  Error :functionIsType,  Error :universeIsType

Latex:
\mforall{}[T:Type].  \mforall{}[R,R':T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}x,y:T.    (R[x;y]  \mLeftarrow{}{}\mRightarrow{}  R'[x;y]))  {}\mRightarrow{}  (Trans(T;y,x.R[x;y])  \mLeftarrow{}{}\mRightarrow{}  Trans(T;y,x.R'[x;y])))



Date html generated: 2019_06_20-PM-00_28_46
Last ObjectModification: 2018_09_26-AM-11_46_35

Theory : rel_1


Home Index