Nuprl Lemma : rel-connected_weakening

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ]. ∀[x,y:T].  x──R⟶supposing y ∈ T


Proof




Definitions occuring in Statement :  rel-connected: x──R⟶y uimplies: supposing a uall: [x:A]. B[x] prop: function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  rel-connected: x──R⟶y uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T rel_star: R^* infix_ap: y exists: x:A. B[x] nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: rel_exp: R^n ifthenelse: if then else fi  eq_int: (i =z j) btrue: tt
Lemmas referenced :  false_wf le_wf rel_exp_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation cut introduction axiomEquality hypothesis thin rename dependent_pairFormation dependent_set_memberEquality natural_numberEquality independent_pairFormation lambdaFormation lemma_by_obid sqequalHypSubstitution isectElimination hypothesisEquality applyEquality functionEquality cumulativity universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[x,y:T].    x{}{}R{}\mrightarrow{}y  supposing  x  =  y



Date html generated: 2016_05_13-PM-04_19_20
Last ObjectModification: 2015_12_26-AM-11_33_38

Theory : relations


Home Index