Nuprl Lemma : test-rel-connected
∀T:Type. ∀R:T ⟶ T ⟶ ℙ. ∀x,y,z,w:T.  ((x (R^*) y) 
⇒ (y = z ∈ T) 
⇒ (z (R^*) w) 
⇒ (x (R^*) w))
Proof
Definitions occuring in Statement : 
rel_star: R^*
, 
prop: ℙ
, 
infix_ap: x f y
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
infix_ap: x f y
, 
uall: ∀[x:A]. B[x]
, 
rel-connected: x──R⟶y
, 
guard: {T}
, 
uimplies: b supposing a
Lemmas referenced : 
rel_star_wf, 
equal_wf, 
rel-connected_transitivity, 
rel-connected_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
applyEquality, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
functionEquality, 
cumulativity, 
universeEquality, 
independent_functionElimination, 
independent_isectElimination
Latex:
\mforall{}T:Type.  \mforall{}R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}.  \mforall{}x,y,z,w:T.
    ((x  (R\^{}*)  y)  {}\mRightarrow{}  (y  =  z)  {}\mRightarrow{}  (z  (R\^{}*)  w)  {}\mRightarrow{}  (x  rel\_star(T;  R)  w))
Date html generated:
2016_05_13-PM-04_19_21
Last ObjectModification:
2015_12_26-AM-11_33_36
Theory : relations
Home
Index