Nuprl Lemma : test-rel-connected

T:Type. ∀R:T ⟶ T ⟶ ℙ. ∀x,y,z,w:T.  ((x (R^*) y)  (y z ∈ T)  (z (R^*) w)  (x (R^*) w))


Proof




Definitions occuring in Statement :  rel_star: R^* prop: infix_ap: y all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: infix_ap: y uall: [x:A]. B[x] rel-connected: x──R⟶y guard: {T} uimplies: supposing a
Lemmas referenced :  rel_star_wf equal_wf rel-connected_transitivity rel-connected_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation applyEquality cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis functionEquality cumulativity universeEquality independent_functionElimination independent_isectElimination

Latex:
\mforall{}T:Type.  \mforall{}R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}.  \mforall{}x,y,z,w:T.
    ((x  (R\^{}*)  y)  {}\mRightarrow{}  (y  =  z)  {}\mRightarrow{}  (z  (R\^{}*)  w)  {}\mRightarrow{}  (x  rel\_star(T;  R)  w))



Date html generated: 2016_05_13-PM-04_19_21
Last ObjectModification: 2015_12_26-AM-11_33_36

Theory : relations


Home Index