Nuprl Lemma : binrel_eqv_functionality_wrt_breqv
∀[T:Type]. ∀[a,a',b,b':T ⟶ T ⟶ ℙ].  ((a <≡>{T} b) 
⇒ (a' <≡>{T} b') 
⇒ (a <≡>{T} a' 
⇐⇒ b <≡>{T} b'))
Proof
Definitions occuring in Statement : 
binrel_eqv: E <≡>{T} E'
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
uequiv_rel: UniformEquivRel(T;x,y.E[x; y])
, 
and: P ∧ Q
, 
urefl: UniformlyRefl(T;x,y.E[x; y])
, 
usym: UniformlySym(T;x,y.E[x; y])
, 
utrans: UniformlyTrans(T;x,y.E[x; y])
, 
uimplies: b supposing a
Lemmas referenced : 
uequiv_rel_self_functionality, 
binrel_eqv_wf, 
binrel_eqv_weakening, 
binrel_eqv_inversion, 
binrel_eqv_transitivity
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
thin, 
instantiate, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
functionEquality, 
cumulativity, 
hypothesisEquality, 
universeEquality, 
sqequalRule, 
lambdaEquality, 
hypothesis, 
independent_functionElimination, 
independent_pairFormation, 
lambdaFormation, 
because_Cache, 
independent_isectElimination
Latex:
\mforall{}[T:Type].  \mforall{}[a,a',b,b':T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    ((a  <\mequiv{}>\{T\}  b)  {}\mRightarrow{}  (a'  <\mequiv{}>\{T\}  b')  {}\mRightarrow{}  (a  <\mequiv{}>\{T\}  a'  \mLeftarrow{}{}\mRightarrow{}  b  <\mequiv{}>\{T\}  b'))
Date html generated:
2016_05_14-PM-03_54_47
Last ObjectModification:
2015_12_26-PM-06_56_01
Theory : relations2
Home
Index