Nuprl Lemma : binrel_eqv_functionality_wrt_breqv

[T:Type]. ∀[a,a',b,b':T ⟶ T ⟶ ℙ].  ((a <≡>{T} b)  (a' <≡>{T} b')  (a <≡>{T} a' ⇐⇒ b <≡>{T} b'))


Proof




Definitions occuring in Statement :  binrel_eqv: E <≡>{T} E' uall: [x:A]. B[x] prop: iff: ⇐⇒ Q implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T prop: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] implies:  Q guard: {T} uequiv_rel: UniformEquivRel(T;x,y.E[x; y]) and: P ∧ Q urefl: UniformlyRefl(T;x,y.E[x; y]) usym: UniformlySym(T;x,y.E[x; y]) utrans: UniformlyTrans(T;x,y.E[x; y]) uimplies: supposing a
Lemmas referenced :  uequiv_rel_self_functionality binrel_eqv_wf binrel_eqv_weakening binrel_eqv_inversion binrel_eqv_transitivity
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut thin instantiate lemma_by_obid sqequalHypSubstitution isectElimination functionEquality cumulativity hypothesisEquality universeEquality sqequalRule lambdaEquality hypothesis independent_functionElimination independent_pairFormation lambdaFormation because_Cache independent_isectElimination

Latex:
\mforall{}[T:Type].  \mforall{}[a,a',b,b':T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    ((a  <\mequiv{}>\{T\}  b)  {}\mRightarrow{}  (a'  <\mequiv{}>\{T\}  b')  {}\mRightarrow{}  (a  <\mequiv{}>\{T\}  a'  \mLeftarrow{}{}\mRightarrow{}  b  <\mequiv{}>\{T\}  b'))



Date html generated: 2016_05_14-PM-03_54_47
Last ObjectModification: 2015_12_26-PM-06_56_01

Theory : relations2


Home Index