Nuprl Lemma : binrel_eqv_inversion

[T:Type]. ∀[r,r':T ⟶ T ⟶ ℙ].  ((r <≡>{T} r')  (r' <≡>{T} r))


Proof




Definitions occuring in Statement :  binrel_eqv: E <≡>{T} E' uall: [x:A]. B[x] prop: implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  binrel_eqv: E <≡>{T} E' uall: [x:A]. B[x] implies:  Q all: x:A. B[x] member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q
Lemmas referenced :  all_wf iff_wf iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation hypothesisEquality cut lemma_by_obid sqequalHypSubstitution isectElimination thin lambdaEquality applyEquality hypothesis functionEquality cumulativity universeEquality equalityTransitivity equalitySymmetry independent_isectElimination addLevel productElimination independent_pairFormation impliesFunctionality dependent_functionElimination independent_functionElimination

Latex:
\mforall{}[T:Type].  \mforall{}[r,r':T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    ((r  <\mequiv{}>\{T\}  r')  {}\mRightarrow{}  (r'  <\mequiv{}>\{T\}  r))



Date html generated: 2016_05_14-PM-03_54_44
Last ObjectModification: 2015_12_26-PM-06_56_05

Theory : relations2


Home Index