Nuprl Lemma : binrel_eqv_weakening

[T:Type]. ∀[E,E':T ⟶ T ⟶ ℙ].  E <≡>{T} E' supposing E' ∈ (T ⟶ T ⟶ ℙ)


Proof




Definitions occuring in Statement :  binrel_eqv: E <≡>{T} E' uimplies: supposing a uall: [x:A]. B[x] prop: function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  binrel_eqv: E <≡>{T} E' uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T all: x:A. B[x] prop: squash: T true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  iff_weakening_equal true_wf squash_wf iff_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation cut introduction axiomEquality hypothesis thin rename lambdaFormation hypothesisEquality instantiate lemma_by_obid sqequalHypSubstitution isectElimination functionEquality cumulativity universeEquality applyEquality lambdaEquality imageElimination equalityTransitivity equalitySymmetry natural_numberEquality imageMemberEquality baseClosed because_Cache independent_isectElimination productElimination independent_functionElimination independent_pairFormation

Latex:
\mforall{}[T:Type].  \mforall{}[E,E':T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    E  <\mequiv{}>\{T\}  E'  supposing  E  =  E'



Date html generated: 2016_05_14-PM-03_54_41
Last ObjectModification: 2016_01_14-PM-11_10_35

Theory : relations2


Home Index