Nuprl Lemma : binrel_eqv_weakening
∀[T:Type]. ∀[E,E':T ⟶ T ⟶ ℙ].  E <≡>{T} E' supposing E = E' ∈ (T ⟶ T ⟶ ℙ)
Proof
Definitions occuring in Statement : 
binrel_eqv: E <≡>{T} E'
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
binrel_eqv: E <≡>{T} E'
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
squash: ↓T
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
iff_weakening_equal, 
true_wf, 
squash_wf, 
iff_wf, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
cut, 
introduction, 
axiomEquality, 
hypothesis, 
thin, 
rename, 
lambdaFormation, 
hypothesisEquality, 
instantiate, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
functionEquality, 
cumulativity, 
universeEquality, 
applyEquality, 
lambdaEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
because_Cache, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
independent_pairFormation
Latex:
\mforall{}[T:Type].  \mforall{}[E,E':T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    E  <\mequiv{}>\{T\}  E'  supposing  E  =  E'
Date html generated:
2016_05_14-PM-03_54_41
Last ObjectModification:
2016_01_14-PM-11_10_35
Theory : relations2
Home
Index