Nuprl Lemma : image-per-symmetric
∀[A:Type]. ∀[f:Base].  Sym(Base;x,y.image-per(A;f) x y)
Proof
Definitions occuring in Statement : 
image-per: image-per(A;f)
, 
sym: Sym(T;x,y.E[x; y])
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
base: Base
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
image-per: image-per(A;f)
, 
sym: Sym(T;x,y.E[x; y])
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
usquash: usquash(T)
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
infix_ap: x f y
, 
top: Top
, 
subtype_rel: A ⊆r B
, 
exists: ∃x:A. B[x]
, 
cand: A c∧ B
Lemmas referenced : 
implies-usquash, 
transitive-closure_wf, 
exists_wf, 
equal-wf-base, 
transitive-closure-symmetric, 
istype-void, 
usquash_wf, 
base_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
Error :lambdaFormation_alt, 
sqequalRule, 
introduction, 
sqequalHypSubstitution, 
Error :pertypeElimination2, 
thin, 
cut, 
extract_by_obid, 
isectElimination, 
applyEquality, 
because_Cache, 
Error :lambdaEquality_alt, 
productEquality, 
hypothesis, 
sqequalIntensionalEquality, 
hypothesisEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
Error :inhabitedIsType, 
independent_functionElimination, 
dependent_functionElimination, 
Error :isect_memberEquality_alt, 
voidElimination, 
Error :universeIsType, 
universeEquality, 
productElimination, 
Error :dependent_pairFormation_alt, 
equalitySymmetry, 
independent_pairFormation, 
Error :productIsType, 
Error :equalityIsType4, 
equalityTransitivity
Latex:
\mforall{}[A:Type].  \mforall{}[f:Base].    Sym(Base;x,y.image-per(A;f)  x  y)
Date html generated:
2019_06_20-PM-02_02_37
Last ObjectModification:
2018_10_07-AM-00_51_22
Theory : relations2
Home
Index