Nuprl Lemma : image-per-symmetric

[A:Type]. ∀[f:Base].  Sym(Base;x,y.image-per(A;f) y)


Proof




Definitions occuring in Statement :  image-per: image-per(A;f) sym: Sym(T;x,y.E[x; y]) uall: [x:A]. B[x] apply: a base: Base universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] image-per: image-per(A;f) sym: Sym(T;x,y.E[x; y]) all: x:A. B[x] implies:  Q member: t ∈ T usquash: usquash(T) so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s] infix_ap: y top: Top subtype_rel: A ⊆B exists: x:A. B[x] cand: c∧ B
Lemmas referenced :  implies-usquash transitive-closure_wf exists_wf equal-wf-base transitive-closure-symmetric istype-void usquash_wf base_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  Error :lambdaFormation_alt,  sqequalRule introduction sqequalHypSubstitution Error :pertypeElimination2,  thin cut extract_by_obid isectElimination applyEquality because_Cache Error :lambdaEquality_alt,  productEquality hypothesis sqequalIntensionalEquality hypothesisEquality baseApply closedConclusion baseClosed Error :inhabitedIsType,  independent_functionElimination dependent_functionElimination Error :isect_memberEquality_alt,  voidElimination Error :universeIsType,  universeEquality productElimination Error :dependent_pairFormation_alt,  equalitySymmetry independent_pairFormation Error :productIsType,  Error :equalityIsType4,  equalityTransitivity

Latex:
\mforall{}[A:Type].  \mforall{}[f:Base].    Sym(Base;x,y.image-per(A;f)  x  y)



Date html generated: 2019_06_20-PM-02_02_37
Last ObjectModification: 2018_10_07-AM-00_51_22

Theory : relations2


Home Index