Nuprl Lemma : transitive-closure-symmetric

[A:Type]. ∀[R:A ⟶ A ⟶ ℙ].  (Sym(A;x,y.R y)  Sym(A;x,y.x TC(R) y))


Proof




Definitions occuring in Statement :  transitive-closure: TC(R) sym: Sym(T;x,y.E[x; y]) uall: [x:A]. B[x] prop: infix_ap: y implies:  Q apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q sym: Sym(T;x,y.E[x; y]) all: x:A. B[x] infix_ap: y transitive-closure: TC(R) member: t ∈ T subtype_rel: A ⊆B prop: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] spreadn: spread3 and: P ∧ Q uimplies: supposing a cand: c∧ B top: Top so_lambda: λ2x.t[x] so_apply: x[s] rel_path: rel_path(A;L;x;y) so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] pi1: fst(t) pi2: snd(t) squash: T true: True guard: {T}
Lemmas referenced :  transitive-closure_wf subtype_rel_self istype-universe sym_wf subtype_rel_function map_wf reverse_wf map-length istype-void length-reverse rel_path_wf less_than_wf length_wf list_induction all_wf list_wf list_ind_nil_lemma reverse_nil_lemma map_nil_lemma list_ind_cons_lemma reverse-cons map_append_sq map_cons_lemma cons_wf squash_wf true_wf nil_wf append_wf rel_path-append subtype_rel-equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  Error :lambdaFormation_alt,  sqequalHypSubstitution rename sqequalRule Error :universeIsType,  cut applyEquality introduction extract_by_obid isectElimination thin hypothesisEquality hypothesis instantiate universeEquality Error :inhabitedIsType,  Error :lambdaEquality_alt,  Error :functionIsType,  setElimination productElimination Error :dependent_pairEquality_alt,  functionExtensionality because_Cache functionEquality independent_isectElimination Error :productIsType,  Error :dependent_set_memberEquality_alt,  productEquality promote_hyp independent_pairFormation Error :isect_memberEquality_alt,  voidElimination natural_numberEquality independent_functionElimination dependent_functionElimination equalitySymmetry Error :equalityIsType1,  equalityTransitivity imageElimination imageMemberEquality baseClosed applyLambdaEquality

Latex:
\mforall{}[A:Type].  \mforall{}[R:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].    (Sym(A;x,y.R  x  y)  {}\mRightarrow{}  Sym(A;x,y.x  TC(R)  y))



Date html generated: 2019_06_20-PM-02_01_25
Last ObjectModification: 2018_10_07-AM-00_13_27

Theory : relations2


Home Index