Nuprl Lemma : rel_path-append
∀[A:Type]. ∀[R:A ⟶ A ⟶ ℙ].
  ∀L:(a:A × b:A × (R a b)) List. ∀x,y,z:A. ∀r:R y z.  rel_path(A;L @ [<y, z, r>];x;z) supposing rel_path(A;L;x;y)
Proof
Definitions occuring in Statement : 
rel_path: rel_path(A;L;x;y)
, 
append: as @ bs
, 
cons: [a / b]
, 
nil: []
, 
list: T List
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
pair: <a, b>
, 
product: x:A × B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
uimplies: b supposing a
, 
prop: ℙ
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
rel_path: rel_path(A;L;x;y)
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
top: Top
, 
so_apply: x[s1;s2;s3]
, 
append: as @ bs
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
sq_stable: SqStable(P)
, 
squash: ↓T
Lemmas referenced : 
rel_path_wf, 
list_induction, 
all_wf, 
isect_wf, 
append_wf, 
cons_wf, 
nil_wf, 
istype-universe, 
list_wf, 
subtype_rel_self, 
list_ind_nil_lemma, 
istype-void, 
list_ind_cons_lemma, 
sq_stable__rel_path
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
Error :lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
productEquality, 
applyEquality, 
hypothesis, 
because_Cache, 
sqequalRule, 
Error :lambdaEquality_alt, 
cumulativity, 
functionExtensionality, 
Error :dependent_pairEquality_alt, 
Error :universeIsType, 
Error :productIsType, 
Error :inhabitedIsType, 
independent_functionElimination, 
instantiate, 
universeEquality, 
Error :functionIsType, 
dependent_functionElimination, 
Error :isect_memberEquality_alt, 
voidElimination, 
equalitySymmetry, 
independent_pairFormation, 
productElimination, 
independent_pairEquality, 
axiomEquality, 
Error :equalityIsType1, 
Error :isectIsType, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
independent_isectElimination
Latex:
\mforall{}[A:Type].  \mforall{}[R:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].
    \mforall{}L:(a:A  \mtimes{}  b:A  \mtimes{}  (R  a  b))  List.  \mforall{}x,y,z:A.  \mforall{}r:R  y  z.
        rel\_path(A;L  @  [<y,  z,  r>];x;z)  supposing  rel\_path(A;L;x;y)
Date html generated:
2019_06_20-PM-02_01_20
Last ObjectModification:
2018_10_05-AM-11_20_39
Theory : relations2
Home
Index