Nuprl Lemma : rel_path-append

[A:Type]. ∀[R:A ⟶ A ⟶ ℙ].
  ∀L:(a:A × b:A × (R b)) List. ∀x,y,z:A. ∀r:R z.  rel_path(A;L [<y, z, r>];x;z) supposing rel_path(A;L;x;y)


Proof




Definitions occuring in Statement :  rel_path: rel_path(A;L;x;y) append: as bs cons: [a b] nil: [] list: List uimplies: supposing a uall: [x:A]. B[x] prop: all: x:A. B[x] apply: a function: x:A ⟶ B[x] pair: <a, b> product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T subtype_rel: A ⊆B so_lambda: λ2x.t[x] uimplies: supposing a prop: so_apply: x[s] implies:  Q rel_path: rel_path(A;L;x;y) so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] append: as bs pi1: fst(t) pi2: snd(t) and: P ∧ Q cand: c∧ B sq_stable: SqStable(P) squash: T
Lemmas referenced :  rel_path_wf list_induction all_wf isect_wf append_wf cons_wf nil_wf istype-universe list_wf subtype_rel_self list_ind_nil_lemma istype-void list_ind_cons_lemma sq_stable__rel_path
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  Error :lambdaFormation_alt,  cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality productEquality applyEquality hypothesis because_Cache sqequalRule Error :lambdaEquality_alt,  cumulativity functionExtensionality Error :dependent_pairEquality_alt,  Error :universeIsType,  Error :productIsType,  Error :inhabitedIsType,  independent_functionElimination instantiate universeEquality Error :functionIsType,  dependent_functionElimination Error :isect_memberEquality_alt,  voidElimination equalitySymmetry independent_pairFormation productElimination independent_pairEquality axiomEquality Error :equalityIsType1,  Error :isectIsType,  imageMemberEquality baseClosed imageElimination independent_isectElimination

Latex:
\mforall{}[A:Type].  \mforall{}[R:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].
    \mforall{}L:(a:A  \mtimes{}  b:A  \mtimes{}  (R  a  b))  List.  \mforall{}x,y,z:A.  \mforall{}r:R  y  z.
        rel\_path(A;L  @  [<y,  z,  r>];x;z)  supposing  rel\_path(A;L;x;y)



Date html generated: 2019_06_20-PM-02_01_20
Last ObjectModification: 2018_10_05-AM-11_20_39

Theory : relations2


Home Index