Nuprl Lemma : sq_stable__rel_path

[A:Type]. ∀[R:A ⟶ A ⟶ ℙ].  ∀L:(a:A × b:A × (R b)) List. ∀[x,y:A].  SqStable(rel_path(A;L;x;y))


Proof




Definitions occuring in Statement :  rel_path: rel_path(A;L;x;y) list: List sq_stable: SqStable(P) uall: [x:A]. B[x] prop: all: x:A. B[x] apply: a function: x:A ⟶ B[x] product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] rel_path: rel_path(A;L;x;y) member: t ∈ T subtype_rel: A ⊆B so_lambda: λ2x.t[x] prop: so_lambda: so_lambda(x,y,z.t[x; y; z]) and: P ∧ Q pi1: fst(t) pi2: snd(t) so_apply: x[s1;s2;s3] so_apply: x[s] implies:  Q top: Top sq_stable: SqStable(P)
Lemmas referenced :  list_induction uall_wf sq_stable_wf list_ind_wf equal_wf list_wf list_ind_nil_lemma sq_stable__equal squash_wf list_ind_cons_lemma sq_stable__and pi1_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalRule cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination productEquality cumulativity hypothesisEquality applyEquality functionExtensionality hypothesis because_Cache lambdaEquality instantiate functionEquality universeEquality productElimination independent_functionElimination dependent_functionElimination isect_memberEquality voidElimination voidEquality axiomEquality rename dependent_pairEquality

Latex:
\mforall{}[A:Type].  \mforall{}[R:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].    \mforall{}L:(a:A  \mtimes{}  b:A  \mtimes{}  (R  a  b))  List.  \mforall{}[x,y:A].    SqStable(rel\_path(A;L;x;y))



Date html generated: 2017_04_17-AM-09_25_37
Last ObjectModification: 2017_02_27-PM-05_26_16

Theory : relations2


Home Index