Nuprl Lemma : sq_stable__rel_path
∀[A:Type]. ∀[R:A ⟶ A ⟶ ℙ].  ∀L:(a:A × b:A × (R a b)) List. ∀[x,y:A].  SqStable(rel_path(A;L;x;y))
Proof
Definitions occuring in Statement : 
rel_path: rel_path(A;L;x;y)
, 
list: T List
, 
sq_stable: SqStable(P)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
rel_path: rel_path(A;L;x;y)
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
and: P ∧ Q
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
so_apply: x[s1;s2;s3]
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
top: Top
, 
sq_stable: SqStable(P)
Lemmas referenced : 
list_induction, 
uall_wf, 
sq_stable_wf, 
list_ind_wf, 
equal_wf, 
list_wf, 
list_ind_nil_lemma, 
sq_stable__equal, 
squash_wf, 
list_ind_cons_lemma, 
sq_stable__and, 
pi1_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
sqequalRule, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
productEquality, 
cumulativity, 
hypothesisEquality, 
applyEquality, 
functionExtensionality, 
hypothesis, 
because_Cache, 
lambdaEquality, 
instantiate, 
functionEquality, 
universeEquality, 
productElimination, 
independent_functionElimination, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
axiomEquality, 
rename, 
dependent_pairEquality
Latex:
\mforall{}[A:Type].  \mforall{}[R:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].    \mforall{}L:(a:A  \mtimes{}  b:A  \mtimes{}  (R  a  b))  List.  \mforall{}[x,y:A].    SqStable(rel\_path(A;L;x;y))
Date html generated:
2017_04_17-AM-09_25_37
Last ObjectModification:
2017_02_27-PM-05_26_16
Theory : relations2
Home
Index