Nuprl Lemma : imagetype_wf
∀[A:Type]. ∀[f:Base].  (imagetype(A;f) ∈ Type)
Proof
Definitions occuring in Statement : 
imagetype: imagetype(A;f)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
base: Base
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
imagetype: imagetype(A;f)
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
so_apply: x[s1;s2]
, 
prop: ℙ
, 
guard: {T}
, 
trans: Trans(T;x,y.E[x; y])
, 
sym: Sym(T;x,y.E[x; y])
Lemmas referenced : 
image-per-transitive, 
pertype_wf, 
image-per_wf, 
base_wf, 
image-per-symmetric
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
cumulativity, 
independent_isectElimination, 
lambdaFormation, 
applyEquality, 
because_Cache, 
universeEquality, 
dependent_functionElimination, 
independent_functionElimination
Latex:
\mforall{}[A:Type].  \mforall{}[f:Base].    (imagetype(A;f)  \mmember{}  Type)
Date html generated:
2019_06_20-PM-02_02_42
Last ObjectModification:
2018_09_05-PM-09_17_27
Theory : relations2
Home
Index