Nuprl Lemma : rel-plus-rel-star

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  ∀x,y:T.  ((x R+ y)  (x (R^*) y))


Proof




Definitions occuring in Statement :  rel_plus: R+ rel_star: R^* uall: [x:A]. B[x] prop: infix_ap: y all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  rel_star: R^* rel_plus: R+ infix_ap: y uall: [x:A]. B[x] all: x:A. B[x] implies:  Q exists: x:A. B[x] member: t ∈ T subtype_rel: A ⊆B prop: so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  rel_exp_wf exists_wf nat_plus_wf nat_plus_subtype_nat
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation sqequalHypSubstitution productElimination thin dependent_pairFormation cut hypothesisEquality applyEquality because_Cache hypothesis lemma_by_obid isectElimination lambdaEquality functionEquality cumulativity universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    \mforall{}x,y:T.    ((x  R\msupplus{}  y)  {}\mRightarrow{}  (x  rel\_star(T;  R)  y))



Date html generated: 2016_05_14-PM-03_53_41
Last ObjectModification: 2015_12_26-PM-06_56_35

Theory : relations2


Home Index