Nuprl Lemma : rel-plus-rel-star
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  ∀x,y:T.  ((x R+ y) 
⇒ (x (R^*) y))
Proof
Definitions occuring in Statement : 
rel_plus: R+
, 
rel_star: R^*
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
infix_ap: x f y
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
rel_star: R^*
, 
rel_plus: R+
, 
infix_ap: x f y
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
rel_exp_wf, 
exists_wf, 
nat_plus_wf, 
nat_plus_subtype_nat
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
dependent_pairFormation, 
cut, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
hypothesis, 
lemma_by_obid, 
isectElimination, 
lambdaEquality, 
functionEquality, 
cumulativity, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    \mforall{}x,y:T.    ((x  R\msupplus{}  y)  {}\mRightarrow{}  (x  rel\_star(T;  R)  y))
Date html generated:
2016_05_14-PM-03_53_41
Last ObjectModification:
2015_12_26-PM-06_56_35
Theory : relations2
Home
Index