Nuprl Lemma : rel_exp0

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  ∀x,y:T.  (x R^0 ⇐⇒ y ∈ T)


Proof




Definitions occuring in Statement :  rel_exp: R^n uall: [x:A]. B[x] prop: infix_ap: y all: x:A. B[x] iff: ⇐⇒ Q function: x:A ⟶ B[x] natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q infix_ap: y rel_exp: R^n ifthenelse: if then else fi  eq_int: (i =z j) btrue: tt member: t ∈ T prop: nat: le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A rev_implies:  Q
Lemmas referenced :  infix_ap_wf rel_exp_wf false_wf le_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation independent_pairFormation cut sqequalHypSubstitution hypothesis thin instantiate lemma_by_obid isectElimination cumulativity hypothesisEquality because_Cache universeEquality dependent_set_memberEquality natural_numberEquality sqequalRule functionEquality

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    \mforall{}x,y:T.    (x  rel\_exp(T;  R;  0)  y  \mLeftarrow{}{}\mRightarrow{}  x  =  y)



Date html generated: 2016_05_14-PM-03_52_04
Last ObjectModification: 2015_12_26-PM-06_57_20

Theory : relations2


Home Index