Nuprl Lemma : rel_exp0
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  ∀x,y:T.  (x R^0 y ⇐⇒ x = y ∈ T)
Proof
Definitions occuring in Statement : 
rel_exp: R^n, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
infix_ap: x f y, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
function: x:A ⟶ B[x], 
natural_number: $n, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
infix_ap: x f y, 
rel_exp: R^n, 
ifthenelse: if b then t else f fi , 
eq_int: (i =z j), 
btrue: tt, 
member: t ∈ T, 
prop: ℙ, 
nat: ℕ, 
le: A ≤ B, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
rev_implies: P ⇐ Q
Lemmas referenced : 
infix_ap_wf, 
rel_exp_wf, 
false_wf, 
le_wf, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
independent_pairFormation, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
thin, 
instantiate, 
lemma_by_obid, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
because_Cache, 
universeEquality, 
dependent_set_memberEquality, 
natural_numberEquality, 
sqequalRule, 
functionEquality
Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    \mforall{}x,y:T.    (x  rel\_exp(T;  R;  0)  y  \mLeftarrow{}{}\mRightarrow{}  x  =  y)
Date html generated:
2016_05_14-PM-03_52_04
Last ObjectModification:
2015_12_26-PM-06_57_20
Theory : relations2
Home
Index