Nuprl Lemma : rel_star_functionality_wrt_breqv
∀[T:Type]. ∀[R1,R2:T ⟶ T ⟶ ℙ].  ((R1 <≡>{T} R2) 
⇒ ((R1^*) <≡>{T} (R2^*)))
Proof
Definitions occuring in Statement : 
binrel_eqv: E <≡>{T} E'
, 
rel_star: R^*
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
guard: {T}
, 
prop: ℙ
Lemmas referenced : 
binrel_le_antisymmetry, 
rel_star_wf, 
rel_star_functionality_wrt_brle, 
binrel_le_weakening, 
binrel_eqv_inversion, 
binrel_eqv_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
because_Cache, 
functionEquality, 
cumulativity, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[R1,R2:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    ((R1  <\mequiv{}>\{T\}  R2)  {}\mRightarrow{}  (rel\_star(T;  R1)  <\mequiv{}>\{T\}  rel\_star(T;  R2)))
Date html generated:
2016_05_14-PM-03_55_07
Last ObjectModification:
2015_12_26-PM-06_55_36
Theory : relations2
Home
Index