Nuprl Lemma : spread-ext

[Pos:Type]. ∀[Mv:Pos ⟶ Type].  Spread(Pos;a.Mv[a]) ≡ a:Pos × (Mv[a] ⟶ Spread(Pos;a.Mv[a]))


Proof




Definitions occuring in Statement :  Spread: Spread(Pos;a.Mv[a]) ext-eq: A ≡ B uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T Spread: Spread(Pos;a.Mv[a]) so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a continuous-monotone: ContinuousMonotone(T.F[T]) and: P ∧ Q type-monotone: Monotone(T.F[T]) subtype_rel: A ⊆B all: x:A. B[x] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] strong-type-continuous: Continuous+(T.F[T]) type-continuous: Continuous(T.F[T]) guard: {T} ext-eq: A ≡ B
Lemmas referenced :  corec-ext subtype_rel_product subtype_rel_function subtype_rel_wf strong-continuous-depproduct strong-continuous-function continuous-id subtype_rel_weakening nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin sqequalRule lambdaEquality productEquality hypothesisEquality functionEquality applyEquality universeEquality independent_isectElimination independent_pairFormation because_Cache hypothesis lambdaFormation axiomEquality isect_memberEquality equalityTransitivity equalitySymmetry isectEquality cumulativity productElimination independent_pairEquality

Latex:
\mforall{}[Pos:Type].  \mforall{}[Mv:Pos  {}\mrightarrow{}  Type].    Spread(Pos;a.Mv[a])  \mequiv{}  a:Pos  \mtimes{}  (Mv[a]  {}\mrightarrow{}  Spread(Pos;a.Mv[a]))



Date html generated: 2016_05_14-PM-03_56_19
Last ObjectModification: 2015_12_26-PM-05_48_18

Theory : spread


Home Index