Nuprl Lemma : spread-ext
∀[Pos:Type]. ∀[Mv:Pos ⟶ Type].  Spread(Pos;a.Mv[a]) ≡ a:Pos × (Mv[a] ⟶ Spread(Pos;a.Mv[a]))
Proof
Definitions occuring in Statement : 
Spread: Spread(Pos;a.Mv[a])
, 
ext-eq: A ≡ B
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
Spread: Spread(Pos;a.Mv[a])
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
continuous-monotone: ContinuousMonotone(T.F[T])
, 
and: P ∧ Q
, 
type-monotone: Monotone(T.F[T])
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
strong-type-continuous: Continuous+(T.F[T])
, 
type-continuous: Continuous(T.F[T])
, 
guard: {T}
, 
ext-eq: A ≡ B
Lemmas referenced : 
corec-ext, 
subtype_rel_product, 
subtype_rel_function, 
subtype_rel_wf, 
strong-continuous-depproduct, 
strong-continuous-function, 
continuous-id, 
subtype_rel_weakening, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
sqequalRule, 
lambdaEquality, 
productEquality, 
hypothesisEquality, 
functionEquality, 
applyEquality, 
universeEquality, 
independent_isectElimination, 
independent_pairFormation, 
because_Cache, 
hypothesis, 
lambdaFormation, 
axiomEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
isectEquality, 
cumulativity, 
productElimination, 
independent_pairEquality
Latex:
\mforall{}[Pos:Type].  \mforall{}[Mv:Pos  {}\mrightarrow{}  Type].    Spread(Pos;a.Mv[a])  \mequiv{}  a:Pos  \mtimes{}  (Mv[a]  {}\mrightarrow{}  Spread(Pos;a.Mv[a]))
Date html generated:
2016_05_14-PM-03_56_19
Last ObjectModification:
2015_12_26-PM-05_48_18
Theory : spread
Home
Index