Nuprl Lemma : subtype_rel_isect-2

[A:Type]. ∀[B1,B2:A ⟶ Type].  (⋂x:A. B1[x]) ⊆(⋂x:A. B2[x]) supposing ∀[x:A]. (B1[x] ⊆B2[x])


Proof




Definitions occuring in Statement :  uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] so_apply: x[s] isect: x:A. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] and: P ∧ Q subtype_rel: A ⊆B all: x:A. B[x] prop:
Lemmas referenced :  subtype_rel_isect_general uall_wf subtype_rel_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality because_Cache sqequalRule lambdaEquality applyEquality independent_isectElimination independent_pairFormation lambdaFormation hypothesis axiomEquality isect_memberEquality equalityTransitivity equalitySymmetry functionEquality cumulativity universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[B1,B2:A  {}\mrightarrow{}  Type].    (\mcap{}x:A.  B1[x])  \msubseteq{}r  (\mcap{}x:A.  B2[x])  supposing  \mforall{}[x:A].  (B1[x]  \msubseteq{}r  B2[x])



Date html generated: 2016_05_13-PM-03_18_54
Last ObjectModification: 2015_12_26-AM-09_08_06

Theory : subtype_0


Home Index