Nuprl Lemma : subtype_rel_isect_general
∀[A,T:Type]. ∀[C:A ⟶ Type]. ∀[B:T ⟶ Type].  (⋂x:A. C[x]) ⊆r (⋂x:T. B[x]) supposing (T ⊆r A) ∧ (∀x:T. (C[x] ⊆r B[x]))
Proof
Definitions occuring in Statement : 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
isect: ⋂x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
Lemmas referenced : 
equal_wf, 
subtype_rel_wf, 
all_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
lambdaEquality, 
isect_memberEquality, 
hypothesisEquality, 
applyEquality, 
sqequalRule, 
isectElimination, 
hypothesis, 
equalityTransitivity, 
equalitySymmetry, 
functionExtensionality, 
cumulativity, 
lambdaFormation, 
dependent_functionElimination, 
extract_by_obid, 
independent_functionElimination, 
isectEquality, 
axiomEquality, 
productEquality, 
because_Cache, 
functionEquality, 
universeEquality
Latex:
\mforall{}[A,T:Type].  \mforall{}[C:A  {}\mrightarrow{}  Type].  \mforall{}[B:T  {}\mrightarrow{}  Type].
    (\mcap{}x:A.  C[x])  \msubseteq{}r  (\mcap{}x:T.  B[x])  supposing  (T  \msubseteq{}r  A)  \mwedge{}  (\mforall{}x:T.  (C[x]  \msubseteq{}r  B[x]))
Date html generated:
2017_04_14-AM-07_14_02
Last ObjectModification:
2017_02_27-PM-02_49_44
Theory : subtype_0
Home
Index