Nuprl Lemma : subtype_rel_isect_general

[A,T:Type]. ∀[C:A ⟶ Type]. ∀[B:T ⟶ Type].  (⋂x:A. C[x]) ⊆(⋂x:T. B[x]) supposing (T ⊆A) ∧ (∀x:T. (C[x] ⊆B[x]))


Proof




Definitions occuring in Statement :  uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] and: P ∧ Q isect: x:A. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q subtype_rel: A ⊆B so_apply: x[s] all: x:A. B[x] implies:  Q prop: so_lambda: λ2x.t[x]
Lemmas referenced :  equal_wf subtype_rel_wf all_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin lambdaEquality isect_memberEquality hypothesisEquality applyEquality sqequalRule isectElimination hypothesis equalityTransitivity equalitySymmetry functionExtensionality cumulativity lambdaFormation dependent_functionElimination extract_by_obid independent_functionElimination isectEquality axiomEquality productEquality because_Cache functionEquality universeEquality

Latex:
\mforall{}[A,T:Type].  \mforall{}[C:A  {}\mrightarrow{}  Type].  \mforall{}[B:T  {}\mrightarrow{}  Type].
    (\mcap{}x:A.  C[x])  \msubseteq{}r  (\mcap{}x:T.  B[x])  supposing  (T  \msubseteq{}r  A)  \mwedge{}  (\mforall{}x:T.  (C[x]  \msubseteq{}r  B[x]))



Date html generated: 2017_04_14-AM-07_14_02
Last ObjectModification: 2017_02_27-PM-02_49_44

Theory : subtype_0


Home Index