Nuprl Lemma : sq_stable__strong-subtype

[A,B:Type].  SqStable(strong-subtype(A;B))


Proof




Definitions occuring in Statement :  strong-subtype: strong-subtype(A;B) sq_stable: SqStable(P) uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T sq_stable: SqStable(P) implies:  Q squash: T strong-subtype: strong-subtype(A;B) cand: c∧ B so_lambda: λ2x.t[x] subtype_rel: A ⊆B so_apply: x[s] exists: x:A. B[x] prop:
Lemmas referenced :  strong-subtype_witness strong-subtype_wf squash_wf equal_wf exists_wf sq_stable__subtype_rel
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation sqequalHypSubstitution imageElimination lemma_by_obid isectElimination thin hypothesisEquality hypothesis independent_functionElimination productElimination sqequalRule imageMemberEquality baseClosed independent_pairFormation setEquality lambdaEquality applyEquality because_Cache dependent_functionElimination universeEquality isect_memberEquality

Latex:
\mforall{}[A,B:Type].    SqStable(strong-subtype(A;B))



Date html generated: 2016_05_13-PM-04_12_18
Last ObjectModification: 2016_01_14-PM-07_29_35

Theory : subtype_1


Home Index