Nuprl Lemma : sq_stable__strong-subtype
∀[A,B:Type].  SqStable(strong-subtype(A;B))
Proof
Definitions occuring in Statement : 
strong-subtype: strong-subtype(A;B)
, 
sq_stable: SqStable(P)
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
sq_stable: SqStable(P)
, 
implies: P 
⇒ Q
, 
squash: ↓T
, 
strong-subtype: strong-subtype(A;B)
, 
cand: A c∧ B
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
Lemmas referenced : 
strong-subtype_witness, 
strong-subtype_wf, 
squash_wf, 
equal_wf, 
exists_wf, 
sq_stable__subtype_rel
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
sqequalHypSubstitution, 
imageElimination, 
lemma_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
productElimination, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
independent_pairFormation, 
setEquality, 
lambdaEquality, 
applyEquality, 
because_Cache, 
dependent_functionElimination, 
universeEquality, 
isect_memberEquality
Latex:
\mforall{}[A,B:Type].    SqStable(strong-subtype(A;B))
Date html generated:
2016_05_13-PM-04_12_18
Last ObjectModification:
2016_01_14-PM-07_29_35
Theory : subtype_1
Home
Index