Nuprl Lemma : strong-subtype_functionality
∀[A1,B1,A2,B2:Type].  (A1 ≡ A2 
⇒ B1 ≡ B2 
⇒ strong-subtype(A1;B1) 
⇒ strong-subtype(A2;B2))
Proof
Definitions occuring in Statement : 
strong-subtype: strong-subtype(A;B)
, 
ext-eq: A ≡ B
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
strong-subtype: strong-subtype(A;B)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
cand: A c∧ B
, 
guard: {T}
, 
uimplies: b supposing a
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
Lemmas referenced : 
ext-eq_inversion, 
subtype_rel_transitivity, 
subtype_rel_weakening, 
subtype_rel_wf, 
exists_wf, 
equal_wf, 
ext-eq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
because_Cache, 
independent_pairFormation, 
productEquality, 
setEquality, 
lambdaEquality, 
applyEquality, 
dependent_functionElimination, 
independent_pairEquality, 
axiomEquality, 
universeEquality, 
isect_memberEquality, 
equalityElimination, 
setElimination, 
rename, 
dependent_set_memberEquality, 
dependent_pairFormation
Latex:
\mforall{}[A1,B1,A2,B2:Type].    (A1  \mequiv{}  A2  {}\mRightarrow{}  B1  \mequiv{}  B2  {}\mRightarrow{}  strong-subtype(A1;B1)  {}\mRightarrow{}  strong-subtype(A2;B2))
Date html generated:
2016_05_13-PM-04_11_07
Last ObjectModification:
2015_12_26-AM-11_21_52
Theory : subtype_1
Home
Index