Nuprl Lemma : strong-subtype_functionality

[A1,B1,A2,B2:Type].  (A1 ≡ A2  B1 ≡ B2  strong-subtype(A1;B1)  strong-subtype(A2;B2))


Proof




Definitions occuring in Statement :  strong-subtype: strong-subtype(A;B) ext-eq: A ≡ B uall: [x:A]. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  strong-subtype: strong-subtype(A;B) uall: [x:A]. B[x] member: t ∈ T implies:  Q cand: c∧ B guard: {T} uimplies: supposing a prop: so_lambda: λ2x.t[x] subtype_rel: A ⊆B so_apply: x[s] exists: x:A. B[x]
Lemmas referenced :  ext-eq_inversion subtype_rel_transitivity subtype_rel_weakening subtype_rel_wf exists_wf equal_wf ext-eq_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lambdaFormation sqequalHypSubstitution productElimination thin lemma_by_obid isectElimination hypothesisEquality independent_isectElimination hypothesis because_Cache independent_pairFormation productEquality setEquality lambdaEquality applyEquality dependent_functionElimination independent_pairEquality axiomEquality universeEquality isect_memberEquality equalityElimination setElimination rename dependent_set_memberEquality dependent_pairFormation

Latex:
\mforall{}[A1,B1,A2,B2:Type].    (A1  \mequiv{}  A2  {}\mRightarrow{}  B1  \mequiv{}  B2  {}\mRightarrow{}  strong-subtype(A1;B1)  {}\mRightarrow{}  strong-subtype(A2;B2))



Date html generated: 2016_05_13-PM-04_11_07
Last ObjectModification: 2015_12_26-AM-11_21_52

Theory : subtype_1


Home Index