Nuprl Lemma : t-sqle-subtype

[A,B:Type].  ∀[a,b:A].  (t-sqle(A;a;b)  t-sqle(B;a;b)) supposing A ⊆B


Proof




Definitions occuring in Statement :  t-sqle: t-sqle(T;a;b) uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a implies:  Q t-sqle: t-sqle(T;a;b) squash: T exists: x:A. B[x] subtype_rel: A ⊆B prop: per-class: per-class(T;a) guard: {T} so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  subtype_rel_wf t-sqle_wf b-union_wf subtype_rel_transitivity base_wf subtype_rel_b-union-right per-class_wf exists_wf sqle_wf_base subtype_rel_per-class
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation sqequalHypSubstitution imageElimination productElimination thin dependent_pairFormation hypothesisEquality applyEquality lemma_by_obid isectElimination because_Cache independent_isectElimination hypothesis sqequalRule setElimination rename cumulativity lambdaEquality imageMemberEquality baseClosed dependent_functionElimination isect_memberEquality equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[A,B:Type].    \mforall{}[a,b:A].    (t-sqle(A;a;b)  {}\mRightarrow{}  t-sqle(B;a;b))  supposing  A  \msubseteq{}r  B



Date html generated: 2016_05_13-PM-04_12_52
Last ObjectModification: 2016_01_14-PM-07_29_00

Theory : subtype_1


Home Index