Nuprl Lemma : t-sqle-subtype
∀[A,B:Type].  ∀[a,b:A].  (t-sqle(A;a;b) 
⇒ t-sqle(B;a;b)) supposing A ⊆r B
Proof
Definitions occuring in Statement : 
t-sqle: t-sqle(T;a;b)
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
implies: P 
⇒ Q
, 
t-sqle: t-sqle(T;a;b)
, 
squash: ↓T
, 
exists: ∃x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
per-class: per-class(T;a)
, 
guard: {T}
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
subtype_rel_wf, 
t-sqle_wf, 
b-union_wf, 
subtype_rel_transitivity, 
base_wf, 
subtype_rel_b-union-right, 
per-class_wf, 
exists_wf, 
sqle_wf_base, 
subtype_rel_per-class
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
sqequalHypSubstitution, 
imageElimination, 
productElimination, 
thin, 
dependent_pairFormation, 
hypothesisEquality, 
applyEquality, 
lemma_by_obid, 
isectElimination, 
because_Cache, 
independent_isectElimination, 
hypothesis, 
sqequalRule, 
setElimination, 
rename, 
cumulativity, 
lambdaEquality, 
imageMemberEquality, 
baseClosed, 
dependent_functionElimination, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality
Latex:
\mforall{}[A,B:Type].    \mforall{}[a,b:A].    (t-sqle(A;a;b)  {}\mRightarrow{}  t-sqle(B;a;b))  supposing  A  \msubseteq{}r  B
Date html generated:
2016_05_13-PM-04_12_52
Last ObjectModification:
2016_01_14-PM-07_29_00
Theory : subtype_1
Home
Index