Nuprl Lemma : union-mono

A,B:Type.  ((mono(A) ∧ mono(B))  mono(A B))


Proof




Definitions occuring in Statement :  mono: mono(T) all: x:A. B[x] implies:  Q and: P ∧ Q union: left right universe: Type
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q and: P ∧ Q mono: mono(T) uall: [x:A]. B[x] member: t ∈ T exists: x:A. B[x] prop: guard: {T}
Lemmas referenced :  is-above-inl is-above-inr is-above_wf base_wf and_wf mono_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution productElimination thin cut unionElimination lemma_by_obid isectElimination hypothesisEquality dependent_functionElimination independent_functionElimination hypothesis sqequalRule inlEquality because_Cache inrEquality unionEquality universeEquality

Latex:
\mforall{}A,B:Type.    ((mono(A)  \mwedge{}  mono(B))  {}\mRightarrow{}  mono(A  +  B))



Date html generated: 2016_05_13-PM-04_13_54
Last ObjectModification: 2015_12_26-AM-11_10_03

Theory : subtype_1


Home Index