Nuprl Lemma : union-mono
∀A,B:Type.  ((mono(A) ∧ mono(B)) ⇒ mono(A + B))
Proof
Definitions occuring in Statement : 
mono: mono(T), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q, 
union: left + right, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q, 
mono: mono(T), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
exists: ∃x:A. B[x], 
prop: ℙ, 
guard: {T}
Lemmas referenced : 
is-above-inl, 
is-above-inr, 
is-above_wf, 
base_wf, 
and_wf, 
mono_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
unionElimination, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
dependent_functionElimination, 
independent_functionElimination, 
hypothesis, 
sqequalRule, 
inlEquality, 
because_Cache, 
inrEquality, 
unionEquality, 
universeEquality
Latex:
\mforall{}A,B:Type.    ((mono(A)  \mwedge{}  mono(B))  {}\mRightarrow{}  mono(A  +  B))
Date html generated:
2016_05_13-PM-04_13_54
Last ObjectModification:
2015_12_26-AM-11_10_03
Theory : subtype_1
Home
Index