Nuprl Lemma : wfterm_wf

[opr:Type]. ∀[sort:term(opr) ⟶ ℕ]. ∀[arity:opr ⟶ ((ℕ × ℕList)].  (wfterm(opr;sort;arity) ∈ Type)


Proof




Definitions occuring in Statement :  wfterm: wfterm(opr;sort;arity) term: term(opr) list: List nat: uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T wfterm: wfterm(opr;sort;arity) prop:
Lemmas referenced :  term_wf assert_wf wf-term_wf list_wf nat_wf istype-nat istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule setEquality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry functionIsType universeIsType productEquality isect_memberEquality_alt isectIsTypeImplies inhabitedIsType instantiate universeEquality

Latex:
\mforall{}[opr:Type].  \mforall{}[sort:term(opr)  {}\mrightarrow{}  \mBbbN{}].  \mforall{}[arity:opr  {}\mrightarrow{}  ((\mBbbN{}  \mtimes{}  \mBbbN{})  List)].
    (wfterm(opr;sort;arity)  \mmember{}  Type)



Date html generated: 2020_05_19-PM-09_58_22
Last ObjectModification: 2020_03_09-PM-04_10_18

Theory : terms


Home Index