Nuprl Lemma : wfterm_wf
∀[opr:Type]. ∀[sort:term(opr) ⟶ ℕ]. ∀[arity:opr ⟶ ((ℕ × ℕ) List)].  (wfterm(opr;sort;arity) ∈ Type)
Proof
Definitions occuring in Statement : 
wfterm: wfterm(opr;sort;arity)
, 
term: term(opr)
, 
list: T List
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
wfterm: wfterm(opr;sort;arity)
, 
prop: ℙ
Lemmas referenced : 
term_wf, 
assert_wf, 
wf-term_wf, 
list_wf, 
nat_wf, 
istype-nat, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
setEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionIsType, 
universeIsType, 
productEquality, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType, 
instantiate, 
universeEquality
Latex:
\mforall{}[opr:Type].  \mforall{}[sort:term(opr)  {}\mrightarrow{}  \mBbbN{}].  \mforall{}[arity:opr  {}\mrightarrow{}  ((\mBbbN{}  \mtimes{}  \mBbbN{})  List)].
    (wfterm(opr;sort;arity)  \mmember{}  Type)
Date html generated:
2020_05_19-PM-09_58_22
Last ObjectModification:
2020_03_09-PM-04_10_18
Theory : terms
Home
Index